Quadplane: add transiton class

This commit is contained in:
Iampete1 2021-09-18 00:28:21 +01:00 committed by Andrew Tridgell
parent 9073d16b09
commit af8688b300
3 changed files with 236 additions and 203 deletions

View File

@ -11,6 +11,7 @@ const AP_Param::GroupInfo QuadPlane::var_info[] = {
// @Description: This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode. // @Description: This enables QuadPlane functionality, assuming multicopter motors start on output 5. If this is set to 2 then when starting AUTO mode it will initially be in VTOL AUTO mode.
// @Values: 0:Disable,1:Enable,2:Enable VTOL AUTO // @Values: 0:Disable,1:Enable,2:Enable VTOL AUTO
// @User: Standard // @User: Standard
// @RebootRequired: True
AP_GROUPINFO_FLAGS("ENABLE", 1, QuadPlane, enable, 0, AP_PARAM_FLAG_ENABLE), AP_GROUPINFO_FLAGS("ENABLE", 1, QuadPlane, enable, 0, AP_PARAM_FLAG_ENABLE),
// @Group: M_ // @Group: M_
@ -613,7 +614,7 @@ bool QuadPlane::setup(void)
} }
// Make sure not both a tailsiter and tiltrotor // Make sure not both a tailsiter and tiltrotor
if (tailsitter.enabled() && tiltrotor.enabled()) { if ((tailsitter.enable > 0) && (tiltrotor.enable > 0)) {
AP_BoardConfig::config_error("set TAILSIT_ENABLE 0 or TILT_ENABLE 0"); AP_BoardConfig::config_error("set TAILSIT_ENABLE 0 or TILT_ENABLE 0");
} }
@ -646,7 +647,7 @@ bool QuadPlane::setup(void)
AP_Param::load_object_from_eeprom(motors, motors_var_info); AP_Param::load_object_from_eeprom(motors, motors_var_info);
// create the attitude view used by the VTOL code // create the attitude view used by the VTOL code
ahrs_view = ahrs.create_view(tailsitter.enabled() ? ROTATION_PITCH_90 : ROTATION_NONE, ahrs_trim_pitch); ahrs_view = ahrs.create_view((tailsitter.enable > 0) ? ROTATION_PITCH_90 : ROTATION_NONE, ahrs_trim_pitch);
if (ahrs_view == nullptr) { if (ahrs_view == nullptr) {
AP_BoardConfig::allocation_error("ahrs_view"); AP_BoardConfig::allocation_error("ahrs_view");
} }
@ -688,7 +689,6 @@ bool QuadPlane::setup(void)
SRV_Channels::set_failsafe_pwm(func, motors->get_pwm_output_min()); SRV_Channels::set_failsafe_pwm(func, motors->get_pwm_output_min());
} }
transition_state = TRANSITION_DONE;
// default QAssist state as set with Q_OPTIONS // default QAssist state as set with Q_OPTIONS
if ((options & OPTION_Q_ASSIST_FORCE_ENABLE) != 0) { if ((options & OPTION_Q_ASSIST_FORCE_ENABLE) != 0) {
@ -703,6 +703,15 @@ bool QuadPlane::setup(void)
tiltrotor.setup(); tiltrotor.setup();
if (!transition) {
transition = new SLT_Transition(*this, motors);
}
if (!transition) {
AP_BoardConfig::allocation_error("transition");
}
transition->force_transistion_complete();
// param count will have changed // param count will have changed
AP_Param::invalidate_count(); AP_Param::invalidate_count();
@ -759,14 +768,12 @@ void QuadPlane::run_esc_calibration(void)
void QuadPlane::multicopter_attitude_rate_update(float yaw_rate_cds) void QuadPlane::multicopter_attitude_rate_update(float yaw_rate_cds)
{ {
bool use_multicopter_control = in_vtol_mode() && !tailsitter.in_vtol_transition(); bool use_multicopter_control = in_vtol_mode() && !tailsitter.in_vtol_transition();
bool use_multicopter_eulers = false; bool use_yaw_target = false;
if (!use_multicopter_control && float yaw_target_cd = 0.0;
tiltrotor.is_vectored() && if (!use_multicopter_control && transition->update_yaw_target(yaw_target_cd)) {
transition_state <= TRANSITION_TIMER) {
tiltrotor.update_yaw_target();
use_multicopter_control = true; use_multicopter_control = true;
use_multicopter_eulers = true; use_yaw_target = true;
} }
// normal control modes for VTOL and FW flight // normal control modes for VTOL and FW flight
@ -817,10 +824,10 @@ void QuadPlane::multicopter_attitude_rate_update(float yaw_rate_cds)
} }
} }
if (use_multicopter_eulers) { if (use_yaw_target) {
attitude_control->input_euler_angle_roll_pitch_yaw(plane.nav_roll_cd, attitude_control->input_euler_angle_roll_pitch_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd, plane.nav_pitch_cd,
tiltrotor.transition_yaw_cd, yaw_target_cd,
true); true);
} else { } else {
// use euler angle attitude control // use euler angle attitude control
@ -1379,23 +1386,8 @@ bool QuadPlane::should_assist(float aspeed, bool have_airspeed)
/* /*
update for transition from quadplane to fixed wing mode update for transition from quadplane to fixed wing mode
*/ */
void QuadPlane::update_transition(void) void SLT_Transition::update()
{ {
if (plane.control_mode == &plane.mode_manual ||
plane.control_mode == &plane.mode_acro ||
plane.control_mode == &plane.mode_training) {
// in manual modes quad motors are always off
if (!tiltrotor.motors_active() && !tailsitter.enabled()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
}
transition_state = TRANSITION_DONE;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
assisted_flight = false;
return;
}
const uint32_t now = millis(); const uint32_t now = millis();
if (!hal.util->get_soft_armed()) { if (!hal.util->get_soft_armed()) {
@ -1403,27 +1395,21 @@ void QuadPlane::update_transition(void)
transition_start_ms = now; transition_start_ms = now;
} else if ((transition_state != TRANSITION_DONE) && } else if ((transition_state != TRANSITION_DONE) &&
(transition_start_ms != 0) && (transition_start_ms != 0) &&
(transition_failure > 0) && (quadplane.transition_failure > 0) &&
((now - transition_start_ms) > ((uint32_t)transition_failure * 1000))) { ((now - transition_start_ms) > ((uint32_t)quadplane.transition_failure * 1000))) {
gcs().send_text(MAV_SEVERITY_CRITICAL, "Transition failed, exceeded time limit"); gcs().send_text(MAV_SEVERITY_CRITICAL, "Transition failed, exceeded time limit");
plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TRANSITION); plane.set_mode(plane.mode_qland, ModeReason::VTOL_FAILED_TRANSITION);
} }
float aspeed; float aspeed;
bool have_airspeed = ahrs.airspeed_estimate(aspeed); bool have_airspeed = quadplane.ahrs.airspeed_estimate(aspeed);
// tailsitters use angle wait, not airspeed wait
if (tailsitter.enabled() && transition_state == TRANSITION_AIRSPEED_WAIT) {
transition_state = TRANSITION_ANGLE_WAIT_FW;
}
/* /*
see if we should provide some assistance see if we should provide some assistance
*/ */
if (should_assist(aspeed, have_airspeed)) { if (quadplane.should_assist(aspeed, have_airspeed)) {
// the quad should provide some assistance to the plane // the quad should provide some assistance to the plane
assisted_flight = true; quadplane.assisted_flight = true;
if (!tailsitter.enabled()) {
// update transition state for vehicles using airspeed wait // update transition state for vehicles using airspeed wait
if (transition_state != TRANSITION_AIRSPEED_WAIT) { if (transition_state != TRANSITION_AIRSPEED_WAIT) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition started airspeed %.1f", (double)aspeed); gcs().send_text(MAV_SEVERITY_INFO, "Transition started airspeed %.1f", (double)aspeed);
@ -1432,24 +1418,15 @@ void QuadPlane::update_transition(void)
if (transition_start_ms == 0) { if (transition_start_ms == 0) {
transition_start_ms = now; transition_start_ms = now;
} }
}
} else { } else {
assisted_flight = false; quadplane.assisted_flight = false;
} }
if (tailsitter.enabled()) {
if (transition_state == TRANSITION_ANGLE_WAIT_FW &&
tailsitter.transition_fw_complete()) {
transition_state = TRANSITION_DONE;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
}
}
// if rotors are fully forward then we are not transitioning, // if rotors are fully forward then we are not transitioning,
// unless we are waiting for airspeed to increase (in which case // unless we are waiting for airspeed to increase (in which case
// the tilt will decrease rapidly) // the tilt will decrease rapidly)
if (tiltrotor.fully_fwd() && transition_state != TRANSITION_AIRSPEED_WAIT) { if (quadplane.tiltrotor.fully_fwd() && transition_state != TRANSITION_AIRSPEED_WAIT) {
if (transition_state == TRANSITION_TIMER) { if (transition_state == TRANSITION_TIMER) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition FW done"); gcs().send_text(MAV_SEVERITY_INFO, "Transition FW done");
} }
@ -1464,10 +1441,10 @@ void QuadPlane::update_transition(void)
// until we have some ground speed limit to zero pitch // until we have some ground speed limit to zero pitch
plane.TECS_controller.set_pitch_max_limit(0); plane.TECS_controller.set_pitch_max_limit(0);
} else { } else {
plane.TECS_controller.set_pitch_max_limit(transition_pitch_max); plane.TECS_controller.set_pitch_max_limit(quadplane.transition_pitch_max);
} }
} else if (transition_state < TRANSITION_DONE) { } else if (transition_state < TRANSITION_DONE) {
plane.TECS_controller.set_pitch_max_limit((transition_pitch_max+1)*2); plane.TECS_controller.set_pitch_max_limit((quadplane.transition_pitch_max+1)*2);
} }
if (transition_state < TRANSITION_DONE) { if (transition_state < TRANSITION_DONE) {
// during transition we ask TECS to use a synthetic // during transition we ask TECS to use a synthetic
@ -1478,7 +1455,7 @@ void QuadPlane::update_transition(void)
switch (transition_state) { switch (transition_state) {
case TRANSITION_AIRSPEED_WAIT: { case TRANSITION_AIRSPEED_WAIT: {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// we hold in hover until the required airspeed is reached // we hold in hover until the required airspeed is reached
if (transition_start_ms == 0) { if (transition_start_ms == 0) {
gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed wait"); gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed wait");
@ -1486,32 +1463,32 @@ void QuadPlane::update_transition(void)
} }
transition_low_airspeed_ms = now; transition_low_airspeed_ms = now;
if (have_airspeed && aspeed > plane.aparm.airspeed_min && !assisted_flight) { if (have_airspeed && aspeed > plane.aparm.airspeed_min && !quadplane.assisted_flight) {
transition_state = TRANSITION_TIMER; transition_state = TRANSITION_TIMER;
gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed reached %.1f", (double)aspeed); gcs().send_text(MAV_SEVERITY_INFO, "Transition airspeed reached %.1f", (double)aspeed);
} }
assisted_flight = true; quadplane.assisted_flight = true;
// do not allow a climb on the quad motors during transition a // do not allow a climb on the quad motors during transition a
// climb would add load to the airframe, and prolongs the // climb would add load to the airframe, and prolongs the
// transition. We don't limit the climb rate on tilt rotors as // transition. We don't limit the climb rate on tilt rotors as
// otherwise the plane can end up in high-alpha flight with // otherwise the plane can end up in high-alpha flight with
// low VTOL thrust and may not complete a transition // low VTOL thrust and may not complete a transition
float climb_rate_cms = assist_climb_rate_cms(); float climb_rate_cms = quadplane.assist_climb_rate_cms();
if ((options & OPTION_LEVEL_TRANSITION) && !tiltrotor.enabled()) { if ((quadplane.options & QuadPlane::OPTION_LEVEL_TRANSITION) && !quadplane.tiltrotor.enabled()) {
climb_rate_cms = MIN(climb_rate_cms, 0.0f); climb_rate_cms = MIN(climb_rate_cms, 0.0f);
} }
hold_hover(climb_rate_cms); quadplane.hold_hover(climb_rate_cms);
if (!tiltrotor.is_vectored()) { if (!quadplane.tiltrotor.is_vectored()) {
// set desired yaw to current yaw in both desired angle // set desired yaw to current yaw in both desired angle
// and rate request. This reduces wing twist in transition // and rate request. This reduces wing twist in transition
// due to multicopter yaw demands. This is disabled when // due to multicopter yaw demands. This is disabled when
// using vectored yaw for tilt-rotors as the yaw control // using vectored yaw for tilt-rotors as the yaw control
// is needed to maintain good control in forward // is needed to maintain good control in forward
// transitions // transitions
attitude_control->reset_yaw_target_and_rate(); quadplane.attitude_control->reset_yaw_target_and_rate();
attitude_control->rate_bf_yaw_target(ahrs.get_gyro().z); quadplane.attitude_control->rate_bf_yaw_target(quadplane.ahrs.get_gyro().z);
} }
last_throttle = motors->get_throttle(); last_throttle = motors->get_throttle();
@ -1523,37 +1500,37 @@ void QuadPlane::update_transition(void)
plane.rollController.reset_I(); plane.rollController.reset_I();
// give full authority to attitude control // give full authority to attitude control
attitude_control->set_throttle_mix_max(1.0f); quadplane.attitude_control->set_throttle_mix_max(1.0f);
break; break;
} }
case TRANSITION_TIMER: { case TRANSITION_TIMER: {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED); quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
// after airspeed is reached we degrade throttle over the // after airspeed is reached we degrade throttle over the
// transition time, but continue to stabilize // transition time, but continue to stabilize
const uint32_t transition_timer_ms = now - transition_low_airspeed_ms; const uint32_t transition_timer_ms = now - transition_low_airspeed_ms;
if (transition_timer_ms > (unsigned)transition_time_ms) { if (transition_timer_ms > (unsigned)quadplane.transition_time_ms) {
transition_state = TRANSITION_DONE; transition_state = TRANSITION_DONE;
transition_start_ms = 0; transition_start_ms = 0;
transition_low_airspeed_ms = 0; transition_low_airspeed_ms = 0;
gcs().send_text(MAV_SEVERITY_INFO, "Transition done"); gcs().send_text(MAV_SEVERITY_INFO, "Transition done");
} }
float trans_time_ms = (float)transition_time_ms.get(); float trans_time_ms = (float)quadplane.transition_time_ms.get();
float transition_scale = (trans_time_ms - transition_timer_ms) / trans_time_ms; float transition_scale = (trans_time_ms - transition_timer_ms) / trans_time_ms;
float throttle_scaled = last_throttle * transition_scale; float throttle_scaled = last_throttle * transition_scale;
// set zero throttle mix, to give full authority to // set zero throttle mix, to give full authority to
// throttle. This ensures that the fixed wing controllers get // throttle. This ensures that the fixed wing controllers get
// a chance to learn the right integrators during the transition // a chance to learn the right integrators during the transition
attitude_control->set_throttle_mix_value(0.5*transition_scale); quadplane.attitude_control->set_throttle_mix_value(0.5*transition_scale);
if (throttle_scaled < 0.01) { if (throttle_scaled < 0.01) {
// ensure we don't drop all the way to zero or the motors // ensure we don't drop all the way to zero or the motors
// will stop stabilizing // will stop stabilizing
throttle_scaled = 0.01; throttle_scaled = 0.01;
} }
assisted_flight = true; quadplane.assisted_flight = true;
hold_stabilize(throttle_scaled); quadplane.hold_stabilize(throttle_scaled);
// set desired yaw to current yaw in both desired angle and // set desired yaw to current yaw in both desired angle and
// rate request while waiting for transition to // rate request while waiting for transition to
@ -1561,41 +1538,40 @@ void QuadPlane::update_transition(void)
// control surfaces at this stage. // control surfaces at this stage.
// We disable this for vectored yaw tilt rotors as they do need active // We disable this for vectored yaw tilt rotors as they do need active
// yaw control throughout the transition // yaw control throughout the transition
if (!tiltrotor.is_vectored()) { if (!quadplane.tiltrotor.is_vectored()) {
attitude_control->reset_yaw_target_and_rate(); quadplane.attitude_control->reset_yaw_target_and_rate();
attitude_control->rate_bf_yaw_target(ahrs.get_gyro().z); quadplane.attitude_control->rate_bf_yaw_target(quadplane.ahrs.get_gyro().z);
} }
break; break;
} }
case TRANSITION_ANGLE_WAIT_FW: {
set_desired_spool_state(AP_Motors::DesiredSpoolState::THROTTLE_UNLIMITED);
assisted_flight = true;
uint32_t dt = now - transition_start_ms;
// multiply by 0.1 to convert (degrees/second * milliseconds) to centi degrees
plane.nav_pitch_cd = constrain_float(transition_initial_pitch - (tailsitter.transition_rate_fw * dt) * 0.1f * (plane.fly_inverted()?-1.0f:1.0f), -8500, 8500);
plane.nav_roll_cd = 0;
attitude_control->input_euler_angle_roll_pitch_euler_rate_yaw(plane.nav_roll_cd,
plane.nav_pitch_cd,
0);
// set throttle at either hover throttle or current throttle, whichever is higher, through the transition
attitude_control->set_throttle_out(MAX(motors->get_throttle_hover(),attitude_control->get_throttle_in()), true, 0);
break;
}
case TRANSITION_ANGLE_WAIT_VTOL:
// nothing to do, this is handled in the fixed wing attitude controller
return;
case TRANSITION_DONE: case TRANSITION_DONE:
if (!tiltrotor.motors_active() && !tailsitter.enabled()) { if (!quadplane.tiltrotor.motors_active()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN); quadplane.set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output(); motors->output();
} }
return; return;
} }
motors_output(); quadplane.motors_output();
}
void SLT_Transition::VTOL_update()
{
/*
setup the transition state appropriately for next time we go into a non-VTOL mode
*/
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
if (quadplane.throttle_wait && !plane.is_flying()) {
transition_state = TRANSITION_DONE;
} else {
/*
setup for airspeed wait for later
*/
transition_state = TRANSITION_AIRSPEED_WAIT;
}
last_throttle = motors->get_throttle();
} }
/* /*
@ -1648,7 +1624,20 @@ void QuadPlane::update(void)
if (!in_vtol_mode()) { if (!in_vtol_mode()) {
// we're in a fixed wing mode, cope with transitions and check // we're in a fixed wing mode, cope with transitions and check
// for assistance needed // for assistance needed
update_transition(); if (plane.control_mode == &plane.mode_manual ||
plane.control_mode == &plane.mode_acro ||
plane.control_mode == &plane.mode_training) {
// in manual modes quad motors are always off
if (!tiltrotor.motors_active() && !tailsitter.enabled()) {
set_desired_spool_state(AP_Motors::DesiredSpoolState::SHUT_DOWN);
motors->output();
}
transition->force_transistion_complete();
assisted_flight = false;
} else {
transition->update();
}
} else { } else {
assisted_flight = false; assisted_flight = false;
@ -1656,58 +1645,8 @@ void QuadPlane::update(void)
// output to motors // output to motors
motors_output(); motors_output();
if (tailsitter.enabled() && (now - last_vtol_mode_ms) > 1000) { transition->VTOL_update();
/*
we are just entering a VTOL mode as a tailsitter, set
our transition state so the fixed wing controller brings
the nose up before we start trying to fly as a
multicopter
*/
transition_state = TRANSITION_ANGLE_WAIT_VTOL;
transition_start_ms = now;
transition_initial_pitch = constrain_float(ahrs.pitch_sensor,-8500,8500);
}
if (tailsitter.enabled() &&
transition_state == TRANSITION_ANGLE_WAIT_VTOL) {
float aspeed;
bool have_airspeed = ahrs.airspeed_estimate(aspeed);
// provide asistance in forward flight portion of tailsitter transision
if (should_assist(aspeed, have_airspeed)) {
assisted_flight = true;
}
if (tailsitter.transition_vtol_complete()) {
/*
we have completed transition to VTOL as a tailsitter,
setup for the back transition when needed
*/
transition_state = TRANSITION_ANGLE_WAIT_FW;
transition_start_ms = now;
}
} else {
/*
setup the transition state appropriately for next time we go into a non-VTOL mode
*/
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
if (throttle_wait && !plane.is_flying()) {
transition_state = TRANSITION_DONE;
} else if (tailsitter.enabled()) {
/*
setup for the transition back to fixed wing for later
*/
transition_state = TRANSITION_ANGLE_WAIT_FW;
transition_start_ms = now;
transition_initial_pitch = constrain_float(ahrs_view->pitch_sensor,-8500,8500);
} else {
/*
setup for airspeed wait for later
*/
transition_state = TRANSITION_AIRSPEED_WAIT;
}
last_throttle = motors->get_throttle();
}
last_vtol_mode_ms = now;
} }
// disable throttle_wait when throttle rises above 10% // disable throttle_wait when throttle rises above 10%
@ -2503,7 +2442,7 @@ void QuadPlane::vtol_position_controller(void)
// we just want stability from the VTOL controller in these // we just want stability from the VTOL controller in these
// phases of landing, so relax the Z controller, unless we are // phases of landing, so relax the Z controller, unless we are
// providing assistance // providing assistance
if (transition_state == TRANSITION_DONE) { if (transition->complete()) {
pos_control->relax_z_controller(0); pos_control->relax_z_controller(0);
} }
break; break;
@ -2899,7 +2838,7 @@ bool QuadPlane::verify_vtol_takeoff(const AP_Mission::Mission_Command &cmd)
if (plane.current_loc.alt < plane.next_WP_loc.alt) { if (plane.current_loc.alt < plane.next_WP_loc.alt) {
return false; return false;
} }
transition_state = tailsitter.enabled() ? TRANSITION_ANGLE_WAIT_FW : TRANSITION_AIRSPEED_WAIT; transition->restart();
plane.TECS_controller.set_pitch_max_limit(transition_pitch_max); plane.TECS_controller.set_pitch_max_limit(transition_pitch_max);
// todo: why are you doing this, I want to delete it. // todo: why are you doing this, I want to delete it.
@ -3091,7 +3030,7 @@ void QuadPlane::Log_Write_QControl_Tuning()
climb_rate : int16_t(inertial_nav.get_velocity_z()), climb_rate : int16_t(inertial_nav.get_velocity_z()),
throttle_mix : attitude_control->get_throttle_mix(), throttle_mix : attitude_control->get_throttle_mix(),
speed_scaler : tailsitter.log_spd_scaler, speed_scaler : tailsitter.log_spd_scaler,
transition_state : static_cast<uint8_t>(transition_state), transition_state : transition->get_log_transision_state(),
assist : assisted_flight, assist : assisted_flight,
}; };
plane.logger.WriteBlock(&pkt, sizeof(pkt)); plane.logger.WriteBlock(&pkt, sizeof(pkt));
@ -3446,9 +3385,7 @@ bool QuadPlane::is_vtol_land(uint16_t id) const
*/ */
bool QuadPlane::in_transition(void) const bool QuadPlane::in_transition(void) const
{ {
return available() && assisted_flight && return available() && transition->active();
(transition_state == TRANSITION_AIRSPEED_WAIT ||
transition_state == TRANSITION_TIMER);
} }
/* /*
@ -3492,7 +3429,7 @@ void QuadPlane::update_throttle_mix(void)
throttle_mix_accel_ef_filter.apply(accel_ef, plane.scheduler.get_loop_period_s()); throttle_mix_accel_ef_filter.apply(accel_ef, plane.scheduler.get_loop_period_s());
// transition will directly manage the mix // transition will directly manage the mix
if (in_transition()) { if (!transition->allow_update_throttle_mix()) {
return; return;
} }
@ -3598,26 +3535,14 @@ bool QuadPlane::in_vtol_land_poscontrol(void) const
// return true if we should show VTOL view // return true if we should show VTOL view
bool QuadPlane::show_vtol_view() const bool QuadPlane::show_vtol_view() const
{ {
bool show_vtol = in_vtol_mode(); return available() && transition->show_vtol_view();
if (tailsitter.enabled()) {
if (show_vtol && (transition_state == TRANSITION_ANGLE_WAIT_VTOL)) {
// in a vtol mode but still transitioning from forward flight
return false;
} }
if (!show_vtol && (transition_state == TRANSITION_ANGLE_WAIT_FW)) { // return true if we should show VTOL view
// not in VTOL mode but still transitioning from VTOL bool SLT_Transition::show_vtol_view() const
return true; {
}
}
if (!show_vtol && tiltrotor.is_vectored() && transition_state <= TRANSITION_TIMER) {
// we use multirotor controls during fwd transition for
// vectored yaw vehicles
return true;
}
return show_vtol; return quadplane.in_vtol_mode();
} }
// return the PILOT_VELZ_MAX_DN value if non zero, otherwise returns the PILOT_VELZ_MAX value. // return the PILOT_VELZ_MAX_DN value if non zero, otherwise returns the PILOT_VELZ_MAX value.
@ -3740,4 +3665,26 @@ float QuadPlane::FW_vector_throttle_scaling()
QuadPlane *QuadPlane::_singleton = nullptr; QuadPlane *QuadPlane::_singleton = nullptr;
bool SLT_Transition::set_FW_roll_limit(int32_t& roll_limit_cd)
{
if (quadplane.assisted_flight && (transition_state == TRANSITION_AIRSPEED_WAIT || transition_state == TRANSITION_TIMER) &&
(quadplane.options & QuadPlane::OPTION_LEVEL_TRANSITION)) {
// the user wants transitions to be kept level to within LEVEL_ROLL_LIMIT
roll_limit_cd = MIN(roll_limit_cd, plane.g.level_roll_limit*100);
return true;
}
return false;
}
bool SLT_Transition::allow_update_throttle_mix() const
{
// transition is directly managing throttle mix in these cases
return !(quadplane.assisted_flight && (transition_state == TRANSITION_AIRSPEED_WAIT || transition_state == TRANSITION_TIMER));
}
bool SLT_Transition::active() const
{
return quadplane.assisted_flight && ((transition_state == TRANSITION_AIRSPEED_WAIT) || (transition_state == TRANSITION_TIMER));
}
#endif // HAL_QUADPLANE_ENABLED #endif // HAL_QUADPLANE_ENABLED

View File

@ -22,6 +22,7 @@
#include "defines.h" #include "defines.h"
#include "tailsitter.h" #include "tailsitter.h"
#include "tiltrotor.h" #include "tiltrotor.h"
#include "transition.h"
/* /*
QuadPlane specific functionality QuadPlane specific functionality
@ -39,6 +40,8 @@ public:
friend class RC_Channel; friend class RC_Channel;
friend class Tailsitter; friend class Tailsitter;
friend class Tiltrotor; friend class Tiltrotor;
friend class SLT_Transition;
friend class Tailsitter_Transition;
friend class Mode; friend class Mode;
friend class ModeAuto; friend class ModeAuto;
@ -111,11 +114,6 @@ public:
// vtol help for is_flying() // vtol help for is_flying()
bool is_flying(void); bool is_flying(void);
// return current throttle as a percentate
uint8_t throttle_percentage(void) const {
return last_throttle * 100;
}
// return desired forward throttle percentage // return desired forward throttle percentage
float forward_throttle_pct(); float forward_throttle_pct();
float get_weathervane_yaw_rate_cds(void); float get_weathervane_yaw_rate_cds(void);
@ -373,30 +371,16 @@ private:
bool initialised; bool initialised;
// timer start for transition
uint32_t transition_start_ms;
float transition_initial_pitch;
uint32_t transition_low_airspeed_ms;
Location last_auto_target; Location last_auto_target;
// last throttle value when active
float last_throttle;
// pitch when we enter loiter mode // pitch when we enter loiter mode
int32_t loiter_initial_pitch_cd; int32_t loiter_initial_pitch_cd;
// when did we last run the attitude controller? // when did we last run the attitude controller?
uint32_t last_att_control_ms; uint32_t last_att_control_ms;
// true if we have reached the airspeed threshold for transition // transition logic
enum { Transition *transition = nullptr;
TRANSITION_AIRSPEED_WAIT,
TRANSITION_TIMER,
TRANSITION_ANGLE_WAIT_FW,
TRANSITION_ANGLE_WAIT_VTOL,
TRANSITION_DONE
} transition_state;
// true when waiting for pilot throttle // true when waiting for pilot throttle
bool throttle_wait:1; bool throttle_wait:1;
@ -488,9 +472,6 @@ private:
uint32_t last_pidz_active_ms; uint32_t last_pidz_active_ms;
uint32_t last_pidz_init_ms; uint32_t last_pidz_init_ms;
// time when we were last in a vtol control mode
uint32_t last_vtol_mode_ms;
// throttle scailing for vectored motors in FW flighy // throttle scailing for vectored motors in FW flighy
float FW_vector_throttle_scaling(void); float FW_vector_throttle_scaling(void);

105
ArduPlane/transition.h Normal file
View File

@ -0,0 +1,105 @@
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
class QuadPlane;
class AP_MotorsMulticopter;
// Transition empty base class
class Transition
{
public:
Transition(QuadPlane& _quadplane, AP_MotorsMulticopter*& _motors):quadplane(_quadplane),motors(_motors) {};
virtual void update() = 0;
virtual void VTOL_update() = 0;
virtual void force_transistion_complete() = 0;
virtual bool complete() const = 0;
virtual void restart() = 0;
virtual uint8_t get_log_transision_state() const = 0;
virtual bool active() const = 0;
virtual bool show_vtol_view() const = 0;
virtual void set_FW_roll_pitch(int32_t& nav_pitch_cd, int32_t& nav_roll_cd, bool& allow_stick_mixing) {};
virtual bool set_FW_roll_limit(int32_t& roll_limit_cd) { return false; }
virtual bool allow_update_throttle_mix() const { return true; }
virtual bool update_yaw_target(float& yaw_target_cd) { return false; }
protected:
// refences for convenience
QuadPlane& quadplane;
AP_MotorsMulticopter*& motors;
};
// Transition for separate left thrust quadplanes
class SLT_Transition : public Transition
{
public:
using Transition::Transition;
void update() override;
void VTOL_update() override;
void force_transistion_complete() override {
transition_state = TRANSITION_DONE;
transition_start_ms = 0;
transition_low_airspeed_ms = 0;
};
bool complete() const override { return transition_state == TRANSITION_DONE; }
void restart() override { transition_state = TRANSITION_AIRSPEED_WAIT; }
uint8_t get_log_transision_state() const override { return static_cast<uint8_t>(transition_state); }
bool active() const override;
bool show_vtol_view() const override;
bool set_FW_roll_limit(int32_t& roll_limit_cd) override;
bool allow_update_throttle_mix() const override;
protected:
enum {
TRANSITION_AIRSPEED_WAIT,
TRANSITION_TIMER,
TRANSITION_DONE
} transition_state;
// timer start for transition
uint32_t transition_start_ms;
uint32_t transition_low_airspeed_ms;
// last throttle value when active
float last_throttle;
};