AP_InertialSensor: update MPU9250 driver for 1kHz operation
use a time base sample wait, with 1kHz sampling
This commit is contained in:
parent
532e9aace4
commit
9e01c657e5
@ -162,7 +162,7 @@ extern const AP_HAL::HAL& hal;
|
||||
* PS-MPU-9250A-00.pdf, page 8, lists LSB sensitivity of
|
||||
* gyro as 16.4 LSB/DPS at scale factor of +/- 2000dps (FS_SEL==3)
|
||||
*/
|
||||
const float AP_InertialSensor_MPU9250::_gyro_scale = (0.0174532f / 16.4f);
|
||||
#define GYRO_SCALE (0.0174532f / 16.4f)
|
||||
|
||||
/*
|
||||
* PS-MPU-9250A-00.pdf, page 9, lists LSB sensitivity of
|
||||
@ -176,10 +176,20 @@ AP_InertialSensor_MPU9250::AP_InertialSensor_MPU9250() :
|
||||
AP_InertialSensor(),
|
||||
_drdy_pin(NULL),
|
||||
_initialised(false),
|
||||
_mpu9250_product_id(AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE)
|
||||
_mpu9250_product_id(AP_PRODUCT_ID_PIXHAWK_FIRE_CAPE),
|
||||
_last_filter_hz(-1),
|
||||
_accel_filter_x(1000, 15),
|
||||
_accel_filter_y(1000, 15),
|
||||
_accel_filter_z(1000, 15),
|
||||
_gyro_filter_x(1000, 15),
|
||||
_gyro_filter_y(1000, 15),
|
||||
_gyro_filter_z(1000, 15)
|
||||
{
|
||||
}
|
||||
|
||||
/*
|
||||
initialise the sensor
|
||||
*/
|
||||
uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate )
|
||||
{
|
||||
if (_initialised) return _mpu9250_product_id;
|
||||
@ -207,7 +217,7 @@ uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate )
|
||||
do {
|
||||
bool success = _hardware_init(sample_rate);
|
||||
if (success) {
|
||||
hal.scheduler->delay(5+2);
|
||||
hal.scheduler->delay(10);
|
||||
if (!_spi_sem->take(100)) {
|
||||
hal.scheduler->panic(PSTR("MPU9250: Unable to get semaphore"));
|
||||
}
|
||||
@ -231,7 +241,6 @@ uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate )
|
||||
/* read the first lot of data.
|
||||
* _read_data_transaction requires the spi semaphore to be taken by
|
||||
* its caller. */
|
||||
_last_sample_time_micros = hal.scheduler->micros();
|
||||
hal.scheduler->delay(10);
|
||||
if (_spi_sem->take(100)) {
|
||||
_read_data_transaction();
|
||||
@ -247,8 +256,23 @@ uint16_t AP_InertialSensor_MPU9250::_init_sensor( Sample_rate sample_rate )
|
||||
return _mpu9250_product_id;
|
||||
}
|
||||
|
||||
/*================ AP_INERTIALSENSOR PUBLIC INTERFACE ==================== */
|
||||
/*
|
||||
determine if a sample is available. We are using a time based
|
||||
strategy, to avoid time sync issues with the sensor
|
||||
*/
|
||||
bool AP_InertialSensor_MPU9250::_sample_available()
|
||||
{
|
||||
uint32_t tnow = hal.scheduler->micros();
|
||||
while (tnow - _last_sample_usec > _sample_time_usec) {
|
||||
_have_sample_available = true;
|
||||
_last_sample_usec += _sample_time_usec;
|
||||
}
|
||||
return _have_sample_available;
|
||||
}
|
||||
|
||||
/*
|
||||
wait for at least one sample to be available from the sensor
|
||||
*/
|
||||
bool AP_InertialSensor_MPU9250::wait_for_sample(uint16_t timeout_ms)
|
||||
{
|
||||
if (_sample_available()) {
|
||||
@ -256,7 +280,11 @@ bool AP_InertialSensor_MPU9250::wait_for_sample(uint16_t timeout_ms)
|
||||
}
|
||||
uint32_t start = hal.scheduler->millis();
|
||||
while ((hal.scheduler->millis() - start) < timeout_ms) {
|
||||
hal.scheduler->delay_microseconds(100);
|
||||
uint32_t tnow = hal.scheduler->micros();
|
||||
uint32_t tdelay = (_last_sample_usec + _sample_time_usec) - tnow;
|
||||
if (tdelay < 100000) {
|
||||
hal.scheduler->delay_microseconds(tdelay);
|
||||
}
|
||||
if (_sample_available()) {
|
||||
return true;
|
||||
}
|
||||
@ -264,9 +292,11 @@ bool AP_InertialSensor_MPU9250::wait_for_sample(uint16_t timeout_ms)
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
update the accel and gyro vectors
|
||||
*/
|
||||
bool AP_InertialSensor_MPU9250::update( void )
|
||||
{
|
||||
// wait for at least 1 sample
|
||||
if (!wait_for_sample(1000)) {
|
||||
return false;
|
||||
}
|
||||
@ -275,20 +305,16 @@ bool AP_InertialSensor_MPU9250::update( void )
|
||||
|
||||
// disable timer procs for mininum time
|
||||
hal.scheduler->suspend_timer_procs();
|
||||
_gyro[0] = Vector3f(_gyro_sum.x, _gyro_sum.y, _gyro_sum.z);
|
||||
_accel[0] = Vector3f(_accel_sum.x, _accel_sum.y, _accel_sum.z);
|
||||
_num_samples = _sum_count;
|
||||
_accel_sum.zero();
|
||||
_gyro_sum.zero();
|
||||
_sum_count = 0;
|
||||
_gyro[0] = _gyro_filtered;
|
||||
_accel[0] = _accel_filtered;
|
||||
hal.scheduler->resume_timer_procs();
|
||||
|
||||
_gyro[0].rotate(_board_orientation);
|
||||
_gyro[0] *= _gyro_scale / _num_samples;
|
||||
_gyro[0] *= GYRO_SCALE;
|
||||
_gyro[0] -= _gyro_offset[0];
|
||||
|
||||
_accel[0].rotate(_board_orientation);
|
||||
_accel[0] *= MPU9250_ACCEL_SCALE_1G / _num_samples;
|
||||
_accel[0] *= MPU9250_ACCEL_SCALE_1G;
|
||||
|
||||
// rotate for bbone default
|
||||
_accel[0].rotate(ROTATION_ROLL_180_YAW_90);
|
||||
@ -307,15 +333,12 @@ bool AP_InertialSensor_MPU9250::update( void )
|
||||
_accel[0] -= _accel_offset[0];
|
||||
|
||||
if (_last_filter_hz != _mpu6000_filter) {
|
||||
if (_spi_sem->take(10)) {
|
||||
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
|
||||
_set_filter_register(_mpu6000_filter, 0);
|
||||
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_HIGH);
|
||||
_error_count = 0;
|
||||
_spi_sem->give();
|
||||
}
|
||||
_set_filter(_mpu6000_filter);
|
||||
_last_filter_hz = _mpu6000_filter;
|
||||
}
|
||||
|
||||
_have_sample_available = false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -336,44 +359,33 @@ bool AP_InertialSensor_MPU9250::_data_ready()
|
||||
return (status & BIT_RAW_RDY_INT) != 0;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Timer process to poll for new data from the MPU9250.
|
||||
*/
|
||||
void AP_InertialSensor_MPU9250::_poll_data(void)
|
||||
{
|
||||
if (hal.scheduler->in_timerprocess()) {
|
||||
if (!_spi_sem->take_nonblocking()) {
|
||||
/*
|
||||
the semaphore being busy is an expected condition when the
|
||||
mainline code is calling wait_for_sample() which will
|
||||
grab the semaphore. We return now and rely on the mainline
|
||||
code grabbing the latest sample.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
if (_data_ready()) {
|
||||
_last_sample_time_micros = hal.scheduler->micros();
|
||||
_read_data_transaction();
|
||||
}
|
||||
_spi_sem->give();
|
||||
} else {
|
||||
/* Synchronous read - take semaphore */
|
||||
if (_spi_sem->take(10)) {
|
||||
if (_data_ready()) {
|
||||
_last_sample_time_micros = hal.scheduler->micros();
|
||||
_read_data_transaction();
|
||||
}
|
||||
_spi_sem->give();
|
||||
} else {
|
||||
hal.scheduler->panic(
|
||||
PSTR("PANIC: AP_InertialSensor_MPU9250::_poll_data "
|
||||
"failed to take SPI semaphore synchronously"));
|
||||
}
|
||||
if (!_spi_sem->take_nonblocking()) {
|
||||
/*
|
||||
the semaphore being busy is an expected condition when the
|
||||
mainline code is calling wait_for_sample() which will
|
||||
grab the semaphore. We return now and rely on the mainline
|
||||
code grabbing the latest sample.
|
||||
*/
|
||||
return;
|
||||
}
|
||||
if (_data_ready()) {
|
||||
_read_data_transaction();
|
||||
}
|
||||
_spi_sem->give();
|
||||
}
|
||||
|
||||
|
||||
void AP_InertialSensor_MPU9250::_read_data_transaction() {
|
||||
/*
|
||||
read from the data registers and update filtered data
|
||||
*/
|
||||
void AP_InertialSensor_MPU9250::_read_data_transaction()
|
||||
{
|
||||
/* one resister address followed by seven 2-byte registers */
|
||||
struct PACKED {
|
||||
uint8_t cmd;
|
||||
@ -390,38 +402,20 @@ void AP_InertialSensor_MPU9250::_read_data_transaction() {
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
detect a bad SPI bus transaction by looking for all 14 bytes
|
||||
zero, or the wrong INT_STATUS register value. This is used to
|
||||
detect a too high SPI bus speed.
|
||||
*/
|
||||
uint8_t i;
|
||||
for (i=0; i<14; i++) {
|
||||
if (rx.v[i] != 0) break;
|
||||
}
|
||||
if ((rx.int_status&~0x6) != (_drdy_pin==NULL?0:BIT_RAW_RDY_INT) || i == 14) {
|
||||
// likely a bad bus transaction
|
||||
if (++_error_count > 4) {
|
||||
_spi->set_bus_speed(AP_HAL::SPIDeviceDriver::SPI_SPEED_LOW);
|
||||
}
|
||||
}
|
||||
|
||||
#define int16_val(v, idx) ((int16_t)(((uint16_t)v[2*idx] << 8) | v[2*idx+1]))
|
||||
_accel_sum.x += int16_val(rx.v, 1);
|
||||
_accel_sum.y += int16_val(rx.v, 0);
|
||||
_accel_sum.z -= int16_val(rx.v, 2);
|
||||
_gyro_sum.x += int16_val(rx.v, 5);
|
||||
_gyro_sum.y += int16_val(rx.v, 4);
|
||||
_gyro_sum.z -= int16_val(rx.v, 6);
|
||||
_sum_count++;
|
||||
|
||||
if (_sum_count == 0) {
|
||||
// rollover - v unlikely
|
||||
_accel_sum.zero();
|
||||
_gyro_sum.zero();
|
||||
}
|
||||
_accel_filtered = Vector3f(_accel_filter_x.apply(int16_val(rx.v, 1)),
|
||||
_accel_filter_y.apply(int16_val(rx.v, 0)),
|
||||
_accel_filter_z.apply(-int16_val(rx.v, 2)));
|
||||
|
||||
_gyro_filtered = Vector3f(_gyro_filter_x.apply(int16_val(rx.v, 5)),
|
||||
_gyro_filter_y.apply(int16_val(rx.v, 4)),
|
||||
_gyro_filter_z.apply(-int16_val(rx.v, 6)));
|
||||
}
|
||||
|
||||
/*
|
||||
read an 8 bit register
|
||||
*/
|
||||
uint8_t AP_InertialSensor_MPU9250::_register_read( uint8_t reg )
|
||||
{
|
||||
uint8_t addr = reg | 0x80; // Set most significant bit
|
||||
@ -432,10 +426,12 @@ uint8_t AP_InertialSensor_MPU9250::_register_read( uint8_t reg )
|
||||
tx[0] = addr;
|
||||
tx[1] = 0;
|
||||
_spi->transaction(tx, rx, 2);
|
||||
|
||||
return rx[1];
|
||||
}
|
||||
|
||||
/*
|
||||
write an 8 bit register
|
||||
*/
|
||||
void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val)
|
||||
{
|
||||
uint8_t tx[2];
|
||||
@ -447,38 +443,27 @@ void AP_InertialSensor_MPU9250::_register_write(uint8_t reg, uint8_t val)
|
||||
}
|
||||
|
||||
/*
|
||||
set the DLPF filter frequency. Assumes caller has taken semaphore
|
||||
set the accel/gyro filter frequency
|
||||
*/
|
||||
void AP_InertialSensor_MPU9250::_set_filter_register(uint8_t filter_hz, uint8_t default_filter)
|
||||
void AP_InertialSensor_MPU9250::_set_filter(uint8_t filter_hz)
|
||||
{
|
||||
uint8_t filter = default_filter;
|
||||
// choose filtering frequency
|
||||
switch (filter_hz) {
|
||||
case 5:
|
||||
filter = BITS_DLPF_CFG_5HZ;
|
||||
break;
|
||||
case 10:
|
||||
filter = BITS_DLPF_CFG_10HZ;
|
||||
break;
|
||||
case 20:
|
||||
filter = BITS_DLPF_CFG_20HZ;
|
||||
break;
|
||||
case 42:
|
||||
filter = BITS_DLPF_CFG_42HZ;
|
||||
break;
|
||||
case 98:
|
||||
filter = BITS_DLPF_CFG_98HZ;
|
||||
break;
|
||||
if (filter_hz == 0) {
|
||||
filter_hz = _default_filter_hz;
|
||||
}
|
||||
|
||||
if (filter != 0) {
|
||||
_last_filter_hz = filter_hz;
|
||||
_accel_filter_x.set_cutoff_frequency(1000, filter_hz);
|
||||
_accel_filter_y.set_cutoff_frequency(1000, filter_hz);
|
||||
_accel_filter_z.set_cutoff_frequency(1000, filter_hz);
|
||||
|
||||
_register_write(MPUREG_CONFIG, filter);
|
||||
}
|
||||
_gyro_filter_x.set_cutoff_frequency(1000, filter_hz);
|
||||
_gyro_filter_y.set_cutoff_frequency(1000, filter_hz);
|
||||
_gyro_filter_z.set_cutoff_frequency(1000, filter_hz);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
initialise the sensor configuration registers
|
||||
*/
|
||||
bool AP_InertialSensor_MPU9250::_hardware_init(Sample_rate sample_rate)
|
||||
{
|
||||
if (!_spi_sem->take(100)) {
|
||||
@ -515,54 +500,47 @@ bool AP_InertialSensor_MPU9250::_hardware_init(Sample_rate sample_rate)
|
||||
}
|
||||
|
||||
_register_write(MPUREG_PWR_MGMT_2, 0x00); // only used for wake-up in accelerometer only low power mode
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
// Disable I2C bus (recommended on datasheet)
|
||||
_register_write(MPUREG_USER_CTRL, BIT_USER_CTRL_I2C_IF_DIS);
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
uint8_t default_filter;
|
||||
|
||||
// sample rate and filtering
|
||||
// to minimise the effects of aliasing we choose a filter
|
||||
// that is less than half of the sample rate
|
||||
switch (sample_rate) {
|
||||
case RATE_50HZ:
|
||||
// this is used for plane and rover, where noise resistance is
|
||||
// more important than update rate. Tests on an aerobatic plane
|
||||
// show that 10Hz is fine, and makes it very noise resistant
|
||||
default_filter = BITS_DLPF_CFG_10HZ;
|
||||
_sample_shift = 2;
|
||||
_default_filter_hz = 15;
|
||||
_sample_time_usec = 20000;
|
||||
break;
|
||||
case RATE_100HZ:
|
||||
default_filter = BITS_DLPF_CFG_20HZ;
|
||||
_sample_shift = 1;
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 10000;
|
||||
break;
|
||||
case RATE_200HZ:
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 5000;
|
||||
break;
|
||||
case RATE_400HZ:
|
||||
default:
|
||||
default_filter = BITS_DLPF_CFG_20HZ;
|
||||
_sample_shift = 0;
|
||||
_default_filter_hz = 30;
|
||||
_sample_time_usec = 2500;
|
||||
break;
|
||||
}
|
||||
|
||||
_set_filter_register(_mpu6000_filter, default_filter);
|
||||
|
||||
// set sample rate to 200Hz, and use _sample_divider to give
|
||||
// the requested rate to the application
|
||||
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_200HZ);
|
||||
hal.scheduler->delay(1);
|
||||
// used a fixed filter of 42Hz on the sensor, then filter using
|
||||
// the 2-pole software filter
|
||||
_register_write(MPUREG_CONFIG, BITS_DLPF_CFG_42HZ);
|
||||
|
||||
// set sample rate to 1kHz, and use the 2 pole filter to give the
|
||||
// desired rate
|
||||
_register_write(MPUREG_SMPLRT_DIV, MPUREG_SMPLRT_1000HZ);
|
||||
_register_write(MPUREG_GYRO_CONFIG, BITS_GYRO_FS_2000DPS); // Gyro scale 2000º/s
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
// RM-MPU-9250A-00.pdf, pg. 15, select accel full scale 8g
|
||||
_register_write(MPUREG_ACCEL_CONFIG,2<<3);
|
||||
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
// configure interrupt to fire when new data arrives
|
||||
_register_write(MPUREG_INT_ENABLE, BIT_RAW_RDY_EN);
|
||||
hal.scheduler->delay(1);
|
||||
|
||||
// clear interrupt on any read, and hold the data ready pin high
|
||||
// until we clear the interrupt
|
||||
@ -585,14 +563,6 @@ float AP_InertialSensor_MPU9250::get_gyro_drift_rate(void)
|
||||
return ToRad(0.5/60);
|
||||
}
|
||||
|
||||
// return true if a sample is available
|
||||
bool AP_InertialSensor_MPU9250::_sample_available()
|
||||
{
|
||||
_poll_data();
|
||||
return (_sum_count >> _sample_shift) > 0;
|
||||
}
|
||||
|
||||
|
||||
#if MPU9250_DEBUG
|
||||
// dump all config registers - used for debug
|
||||
void AP_InertialSensor_MPU9250::_dump_registers(void)
|
||||
@ -610,12 +580,12 @@ void AP_InertialSensor_MPU9250::_dump_registers(void)
|
||||
#endif
|
||||
|
||||
|
||||
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
|
||||
// get_delta_time returns the time period in seconds overwhich the
|
||||
// sensor data was collected. We just use a constant time, to decouple
|
||||
// the 9250 timing from the main scheduler
|
||||
float AP_InertialSensor_MPU9250::get_delta_time() const
|
||||
{
|
||||
// the sensor runs at 200Hz
|
||||
return 0.005 * _num_samples;
|
||||
|
||||
return _sample_time_usec * 1.0e-6f;
|
||||
}
|
||||
|
||||
#endif // CONFIG_HAL_BOARD
|
||||
|
@ -7,6 +7,8 @@
|
||||
#include <AP_HAL.h>
|
||||
#include <AP_Math.h>
|
||||
#include <AP_Progmem.h>
|
||||
#include <Filter.h>
|
||||
#include <LowPassFilter2p.h>
|
||||
#include "AP_InertialSensor.h"
|
||||
|
||||
// enable debug to see a register dump on startup
|
||||
@ -28,52 +30,51 @@ public:
|
||||
// get_delta_time returns the time period in seconds overwhich the sensor data was collected
|
||||
float get_delta_time() const;
|
||||
|
||||
uint16_t error_count(void) const { return _error_count; }
|
||||
bool healthy(void) const { return _error_count <= 4; }
|
||||
bool get_gyro_health(uint8_t instance) const { return healthy(); }
|
||||
bool get_accel_health(uint8_t instance) const { return healthy(); }
|
||||
|
||||
protected:
|
||||
uint16_t _init_sensor( Sample_rate sample_rate );
|
||||
|
||||
private:
|
||||
uint16_t _init_sensor( Sample_rate sample_rate );
|
||||
AP_HAL::DigitalSource *_drdy_pin;
|
||||
|
||||
bool _sample_available();
|
||||
void _read_data_transaction();
|
||||
bool _data_ready();
|
||||
void _poll_data(void);
|
||||
uint8_t _register_read( uint8_t reg );
|
||||
void _register_write( uint8_t reg, uint8_t val );
|
||||
bool _hardware_init(Sample_rate sample_rate);
|
||||
bool _sample_available();
|
||||
|
||||
AP_HAL::SPIDeviceDriver *_spi;
|
||||
AP_HAL::Semaphore *_spi_sem;
|
||||
|
||||
uint16_t _num_samples;
|
||||
static const float _gyro_scale;
|
||||
|
||||
uint32_t _last_sample_time_micros;
|
||||
uint32_t _sample_time_usec;
|
||||
uint32_t _last_sample_usec;
|
||||
|
||||
// ensure we can't initialise twice
|
||||
bool _initialised;
|
||||
bool _initialised;
|
||||
int16_t _mpu9250_product_id;
|
||||
|
||||
// how many hardware samples before we report a sample to the caller
|
||||
uint8_t _sample_shift;
|
||||
|
||||
// support for updating filter at runtime
|
||||
uint8_t _last_filter_hz;
|
||||
int16_t _last_filter_hz;
|
||||
|
||||
void _set_filter_register(uint8_t filter_hz, uint8_t default_filter);
|
||||
// change the filter frequency
|
||||
void _set_filter(uint8_t filter_hz);
|
||||
|
||||
uint16_t _error_count;
|
||||
// output of accel/gyro filters
|
||||
Vector3f _accel_filtered;
|
||||
Vector3f _gyro_filtered;
|
||||
|
||||
// accumulation in timer - must be read with timer disabled
|
||||
// the sum of the values since last read
|
||||
Vector3l _accel_sum;
|
||||
Vector3l _gyro_sum;
|
||||
volatile int16_t _sum_count;
|
||||
// Low Pass filters for gyro and accel
|
||||
LowPassFilter2p _accel_filter_x;
|
||||
LowPassFilter2p _accel_filter_y;
|
||||
LowPassFilter2p _accel_filter_z;
|
||||
LowPassFilter2p _gyro_filter_x;
|
||||
LowPassFilter2p _gyro_filter_y;
|
||||
LowPassFilter2p _gyro_filter_z;
|
||||
|
||||
// do we currently have a sample pending?
|
||||
bool _have_sample_available;
|
||||
|
||||
// default filter frequency when set to zero
|
||||
uint8_t _default_filter_hz;
|
||||
|
||||
public:
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user