change ADC sample rate to 1kHz
this costs us about 9% of our CPU, but should make aliasing much less of a problem.
This commit is contained in:
parent
acb4538073
commit
9af7021a98
@ -33,10 +33,11 @@ class AP_ADC
|
||||
Pass in an array of 6 channel numbers and results are
|
||||
returned in result[]
|
||||
|
||||
The function returns the amount of time that the returned
|
||||
value has been averaged over, in 2.5 millisecond units
|
||||
The function returns the amount of time (in microseconds)
|
||||
since the last call to Ch6().
|
||||
*/
|
||||
virtual uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result) = 0;
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
|
@ -19,9 +19,11 @@
|
||||
XCK2 = SCK = pin PH2
|
||||
Chip Select pin is PC4 (33) [PH6 (9)]
|
||||
We are using the 16 clocks per conversion timming to increase efficiency (fast)
|
||||
The sampling frequency is 400Hz (Timer2 overflow interrupt)
|
||||
|
||||
The sampling frequency is 1kHz (Timer2 overflow interrupt)
|
||||
|
||||
So if our loop is at 50Hz, our needed sampling freq should be 100Hz, so
|
||||
we have an 4x oversampling and averaging.
|
||||
we have an 10x oversampling and averaging.
|
||||
|
||||
Methods:
|
||||
Init() : Initialization of interrupts an Timers (Timer2 overflow interrupt)
|
||||
@ -60,14 +62,14 @@ static volatile uint32_t _sum[8];
|
||||
|
||||
// how many values we've accumulated since last read
|
||||
static volatile uint16_t _count[8];
|
||||
|
||||
static unsigned char ADC_SPI_transfer(unsigned char data)
|
||||
{
|
||||
/* Wait for empty transmit buffer */
|
||||
while ( !( UCSR2A & (1 << UDRE2)) );
|
||||
/* Put data into buffer, sends the data */
|
||||
UDR2 = data;
|
||||
/* Wait for data to be received */
|
||||
|
||||
static uint32_t last_ch6_micros;
|
||||
|
||||
static inline unsigned char ADC_SPI_transfer(unsigned char data)
|
||||
{
|
||||
/* Put data into buffer, sends the data */
|
||||
UDR2 = data;
|
||||
/* Wait for data to be received */
|
||||
while ( !(UCSR2A & (1 << RXC2)) );
|
||||
/* Get and return received data from buffer */
|
||||
return UDR2;
|
||||
@ -75,38 +77,39 @@ static unsigned char ADC_SPI_transfer(unsigned char data)
|
||||
|
||||
|
||||
ISR (TIMER2_OVF_vect)
|
||||
{
|
||||
uint8_t ch;
|
||||
|
||||
//bit_set(PORTL,6); // To test performance
|
||||
|
||||
{
|
||||
uint8_t ch;
|
||||
|
||||
bit_clear(PORTC, 4); // Enable Chip Select (PIN PC4)
|
||||
ADC_SPI_transfer(adc_cmd[0]); // Command to read the first channel
|
||||
|
||||
for (ch = 0; ch < 8; ch++){
|
||||
uint16_t adc_tmp;
|
||||
adc_tmp = ADC_SPI_transfer(0) << 8; // Read first byte
|
||||
adc_tmp |= ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
|
||||
|
||||
_count[ch]++;
|
||||
if (_count[ch] == 0) {
|
||||
|
||||
for (ch = 0; ch < 8; ch++) {
|
||||
uint16_t count = _count[ch];
|
||||
uint32_t sum = _sum[ch];
|
||||
|
||||
if (++count == 0) {
|
||||
// overflow ... shouldn't happen too often
|
||||
// unless we're just not using the
|
||||
// channel. Notice that we overflow the count
|
||||
// to 1 here, not zero, as otherwise the
|
||||
// reader below could get a division by zero
|
||||
_sum[ch] = 0;
|
||||
_count[ch] = 1;
|
||||
sum = 0;
|
||||
count = 1;
|
||||
last_ch6_micros = micros();
|
||||
}
|
||||
_sum[ch] += adc_tmp;
|
||||
}
|
||||
|
||||
_count[ch] = count;
|
||||
|
||||
sum += ADC_SPI_transfer(0) << 8; // Read first byte
|
||||
sum += ADC_SPI_transfer(adc_cmd[ch + 1]); // Read second byte and send next command
|
||||
|
||||
_sum[ch] = sum;
|
||||
}
|
||||
|
||||
bit_set(PORTC, 4); // Disable Chip Select (PIN PC4)
|
||||
//bit_clear(PORTL,6); // To test performance
|
||||
TCNT2 = 104; // 400Hz interrupt
|
||||
}
|
||||
|
||||
|
||||
TCNT2 = 200;
|
||||
}
|
||||
|
||||
|
||||
// Constructors ////////////////////////////////////////////////////////////////
|
||||
AP_ADC_ADS7844::AP_ADC_ADS7844()
|
||||
{
|
||||
@ -114,21 +117,21 @@ AP_ADC_ADS7844::AP_ADC_ADS7844()
|
||||
|
||||
// Public Methods //////////////////////////////////////////////////////////////
|
||||
void AP_ADC_ADS7844::Init(void)
|
||||
{
|
||||
pinMode(ADC_CHIP_SELECT, OUTPUT);
|
||||
|
||||
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
|
||||
|
||||
// Setup Serial Port2 in SPI mode
|
||||
UBRR2 = 0;
|
||||
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
|
||||
// Set MSPI mode of operation and SPI data mode 0.
|
||||
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
|
||||
// Enable receiver and transmitter.
|
||||
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
|
||||
// Set Baud rate
|
||||
UBRR2 = 2; // SPI clock running at 2.6MHz
|
||||
|
||||
{
|
||||
pinMode(ADC_CHIP_SELECT, OUTPUT);
|
||||
|
||||
digitalWrite(ADC_CHIP_SELECT, HIGH); // Disable device (Chip select is active low)
|
||||
|
||||
// Setup Serial Port2 in SPI mode
|
||||
UBRR2 = 0;
|
||||
DDRH |= (1 << PH2); // SPI clock XCK2 (PH2) as output. This enable SPI Master mode
|
||||
// Set MSPI mode of operation and SPI data mode 0.
|
||||
UCSR2C = (1 << UMSEL21) | (1 << UMSEL20); // |(0 << UCPHA2) | (0 << UCPOL2);
|
||||
// Enable receiver and transmitter.
|
||||
UCSR2B = (1 << RXEN2) | (1 << TXEN2);
|
||||
// Set Baud rate
|
||||
UBRR2 = 2; // SPI clock running at 2.6MHz
|
||||
|
||||
// get an initial value for each channel. This ensures
|
||||
// _count[] is never zero
|
||||
for (uint8_t i=0; i<8; i++) {
|
||||
@ -139,17 +142,18 @@ void AP_ADC_ADS7844::Init(void)
|
||||
_sum[i] = adc_tmp;
|
||||
}
|
||||
|
||||
|
||||
// Enable Timer2 Overflow interrupt to capture ADC data
|
||||
TIMSK2 = 0; // Disable interrupts
|
||||
TCCR2A = 0; // normal counting mode
|
||||
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of 256
|
||||
TCNT2 = 0;
|
||||
TIFR2 = _BV(TOV2); // clear pending interrupts;
|
||||
TIMSK2 = _BV(TOIE2) ; // enable the overflow interrupt
|
||||
}
|
||||
|
||||
// Read one channel value
|
||||
last_ch6_micros = micros();
|
||||
|
||||
// Enable Timer2 Overflow interrupt to capture ADC data
|
||||
TIMSK2 = 0; // Disable interrupts
|
||||
TCCR2A = 0; // normal counting mode
|
||||
TCCR2B = _BV(CS21) | _BV(CS22); // Set prescaler of 256
|
||||
TCNT2 = 0;
|
||||
TIFR2 = _BV(TOV2); // clear pending interrupts;
|
||||
TIMSK2 = _BV(TOIE2) ; // enable the overflow interrupt
|
||||
}
|
||||
|
||||
// Read one channel value
|
||||
uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num)
|
||||
{
|
||||
uint16_t count;
|
||||
@ -174,7 +178,7 @@ uint16_t AP_ADC_ADS7844::Ch(uint8_t ch_num)
|
||||
// equal. This will only be true if we always consistently access a
|
||||
// sensor by either Ch6() or Ch() and never mix them. If you mix them
|
||||
// then you will get very strange results
|
||||
uint16_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
|
||||
uint32_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
|
||||
{
|
||||
uint16_t count[6];
|
||||
uint32_t sum[6];
|
||||
@ -203,7 +207,9 @@ uint16_t AP_ADC_ADS7844::Ch6(const uint8_t *channel_numbers, uint16_t *result)
|
||||
result[i] = sum[i] / count[i];
|
||||
}
|
||||
|
||||
// this assumes the count in all channels is equal, which will
|
||||
// be true if the callers are using the interface consistently
|
||||
return count[0];
|
||||
}
|
||||
// return number of microseconds since last call
|
||||
uint32_t us = micros();
|
||||
uint32_t ret = us - last_ch6_micros;
|
||||
last_ch6_micros = us;
|
||||
return ret;
|
||||
}
|
||||
|
@ -24,9 +24,9 @@ class AP_ADC_ADS7844 : public AP_ADC
|
||||
uint16_t Ch(unsigned char ch_num);
|
||||
|
||||
// Read 6 sensors at once
|
||||
uint16_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
|
||||
|
||||
private:
|
||||
};
|
||||
uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
|
||||
|
||||
private:
|
||||
};
|
||||
|
||||
#endif
|
||||
|
@ -47,11 +47,11 @@ void AP_ADC_HIL::Init(void)
|
||||
uint16_t AP_ADC_HIL::Ch(unsigned char ch_num)
|
||||
{
|
||||
return adcValue[ch_num];
|
||||
}
|
||||
}
|
||||
|
||||
// Read 6 channel values
|
||||
uint16_t AP_ADC_HIL::Ch6(const uint8_t *channel_numbers, uint16_t *result)
|
||||
{
|
||||
uint32_t AP_ADC_HIL::Ch6(const uint8_t *channel_numbers, uint16_t *result)
|
||||
{
|
||||
for (uint8_t i=0; i<6; i++) {
|
||||
result[i] = Ch(channel_numbers[i]);
|
||||
}
|
||||
|
@ -34,12 +34,12 @@ class AP_ADC_HIL : public AP_ADC
|
||||
// Read the sensor, part of public AP_ADC interface
|
||||
uint16_t Ch(unsigned char ch_num);
|
||||
|
||||
///
|
||||
///
|
||||
// Read 6 sensors at once
|
||||
uint16_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
|
||||
|
||||
///
|
||||
// Set the adc raw values given the current rotations rates,
|
||||
uint32_t Ch6(const uint8_t *channel_numbers, uint16_t *result);
|
||||
|
||||
///
|
||||
// Set the adc raw values given the current rotations rates,
|
||||
// temps, accels, and pressures
|
||||
void setHIL(int16_t p, int16_t q, int16_t r, int16_t gyroTemp,
|
||||
int16_t aX, int16_t aY, int16_t aZ, int16_t diffPress);
|
||||
|
@ -279,7 +279,7 @@ AP_IMU_Oilpan::update(void)
|
||||
int tc_temp = _adc->Ch(_gyro_temp_ch);
|
||||
uint16_t adc_values[6];
|
||||
|
||||
_ticks = _adc->Ch6(_sensors, adc_values);
|
||||
_sample_time = _adc->Ch6(_sensors, adc_values);
|
||||
|
||||
// convert corrected gyro readings to delta acceleration
|
||||
//
|
||||
|
@ -81,7 +81,7 @@ public:
|
||||
///
|
||||
/// @returns number of seconds
|
||||
///
|
||||
float get_delta_time(void) { return _ticks * (2.5/1000.0); }
|
||||
float get_delta_time(void) { return _sample_time * 1.0e-6; }
|
||||
|
||||
/// A count of bad sensor readings
|
||||
///
|
||||
@ -98,9 +98,9 @@ protected:
|
||||
/// Most recent gyro reading obtained by ::update
|
||||
Vector3f _gyro;
|
||||
|
||||
/// number of 2.5ms ticks that the accel and gyro values
|
||||
/// were calculated from
|
||||
uint16_t _ticks;
|
||||
/// number of microseconds that the accel and gyro values
|
||||
/// were sampled over
|
||||
uint32_t _sample_time;
|
||||
};
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user