diff --git a/libraries/SITL/SIM_Sailboat.cpp b/libraries/SITL/SIM_Sailboat.cpp new file mode 100644 index 0000000000..9e0e38c6da --- /dev/null +++ b/libraries/SITL/SIM_Sailboat.cpp @@ -0,0 +1,180 @@ +/* + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + */ +/* + Sailboat simulator class + + see explanation of lift and drag explained here: https://en.wikipedia.org/wiki/Forces_on_sails + + To-Do: add heel handling by calculating lateral force from wind vs gravity force from heel to arrive at roll rate or acceleration +*/ + +#include "SIM_Sailboat.h" +#include +#include +#include + +namespace SITL { + +Sailboat::Sailboat(const char *home_str, const char *frame_str) : + Aircraft(home_str, frame_str), + max_wheel_turn(35), + turning_circle(1.8) +{ +} + +// calculate the lift and drag as values from 0 to 1 +// given an apparent wind speed in m/s and angle-of-attack in degrees +void Sailboat::calc_lift_and_drag(float wind_speed, float angle_of_attack_deg, float& lift, float& drag) +{ + // check extremes + if (angle_of_attack_deg <= 0.0f) { + lift = lift_curve[0]; + drag = drag_curve[0]; + return; + } + if (angle_of_attack_deg >= 170.0f) { + lift = lift_curve[17]; + drag = drag_curve[17]; + return; + } + + uint8_t index = constrain_int16(angle_of_attack_deg / 10, 0, 17); + float remainder = angle_of_attack_deg - (index * 10.0f); + lift = linear_interpolate(lift_curve[index], lift_curve[index+1], remainder, 0.0f, 10.0f); + drag = linear_interpolate(drag_curve[index], drag_curve[index+1], remainder, 0.0f, 10.0f); + + // apply scaling by wind speed + lift *= wind_speed; + drag *= wind_speed; +} + +/* + return turning circle (diameter) in meters for steering angle proportion in degrees +*/ +float Sailboat::turn_circle(float steering) +{ + if (fabsf(steering) < 1.0e-6) { + return 0; + } + return turning_circle * sinf(radians(max_wheel_turn)) / sinf(radians(steering*max_wheel_turn)); +} + +/* + return yaw rate in degrees/second given steering_angle and speed +*/ +float Sailboat::calc_yaw_rate(float steering, float speed) +{ + if (fabsf(steering) < 1.0e-6 or fabsf(speed) < 1.0e-6) { + return 0; + } + float d = turn_circle(steering); + float c = M_PI * d; + float t = c / speed; + float rate = 360.0f / t; + return rate; +} + +/* + return lateral acceleration in m/s/s +*/ +float Sailboat::calc_lat_accel(float steering_angle, float speed) +{ + float yaw_rate = calc_yaw_rate(steering_angle, speed); + float accel = radians(yaw_rate) * speed; + return accel; +} + +/* + update the sailboat simulation by one time step + */ +void Sailboat::update(const struct sitl_input &input) +{ + // update wind + update_wind(input); + + // in sailboats the steering controls the rudder, the throttle controls the main sail position + float steering = 2*((input.servos[0]-1000)/1000.0f - 0.5f); + + // calculate mainsail angle from servo output 4, 0 to 90 degrees + float mainsail_angle_bf = constrain_float((input.servos[3]-1000)/1000.0f * 90.0f, 0.0f, 90.0f); + + // calculate apparent wind in earth-frame (this is the direction the wind is coming from) + Vector3f wind_apparent_ef = wind_ef + velocity_ef; + const float wind_apparent_dir_ef = degrees(atan2f(wind_apparent_ef.y, wind_apparent_ef.x)); + const float wind_apparent_speed = safe_sqrt(sq(wind_apparent_ef.x)+sq(wind_apparent_ef.y)); + + // calculate angle-of-attack from wind to mainsail + float aoa_deg = MAX(fabsf(wrap_180(wind_apparent_dir_ef - degrees(AP::ahrs().yaw))) - mainsail_angle_bf, 0); + + // calculate Lift force (perpendicular to wind direction) and Drag force (parallel to wind direction) + float lift_wf, drag_wf; + calc_lift_and_drag(wind_apparent_speed, aoa_deg, lift_wf, drag_wf); + + // rotate lift and drag from wind frame into body frame + const float wind_to_veh_rot_angle_deg = wrap_180(180 + wind_apparent_dir_ef - degrees(AP::ahrs().yaw)); + const float sin_rot_rad = sinf(radians(wind_to_veh_rot_angle_deg)); + const float cos_rot_rad = cosf(radians(wind_to_veh_rot_angle_deg)); + const float force_fwd = fabsf((lift_wf * sin_rot_rad)) + (drag_wf * cos_rot_rad); + + // how much time has passed? + float delta_time = frame_time_us * 1.0e-6f; + + // speed in m/s in body frame + Vector3f velocity_body = dcm.transposed() * velocity_ef; + + // speed along x axis, +ve is forward + float speed = velocity_body.x; + + // yaw rate in degrees/s + float yaw_rate = calc_yaw_rate(steering, speed); + + gyro = Vector3f(0,0,radians(yaw_rate)); + + // update attitude + dcm.rotate(gyro * delta_time); + dcm.normalize(); + + // accel in body frame due acceleration from sail and deceleration from hull friction + accel_body = Vector3f((force_fwd * 1.0f) - (velocity_body.x * 0.5f), 0, 0); + + // add in accel due to direction change + accel_body.y += radians(yaw_rate) * speed; + + // now in earth frame + Vector3f accel_earth = dcm * accel_body; + accel_earth += Vector3f(0, 0, GRAVITY_MSS); + + // we are on the ground, so our vertical accel is zero + accel_earth.z = 0; + + // work out acceleration as seen by the accelerometers. It sees the kinematic + // acceleration (ie. real movement), plus gravity + accel_body = dcm.transposed() * (accel_earth + Vector3f(0, 0, -GRAVITY_MSS)); + + // new velocity vector + velocity_ef += accel_earth * delta_time; + + // new position vector + position += velocity_ef * delta_time; + + // update lat/lon/altitude + update_position(); + time_advance(); + + // update magnetic field + update_mag_field_bf(); +} + +} // namespace SITL diff --git a/libraries/SITL/SIM_Sailboat.h b/libraries/SITL/SIM_Sailboat.h new file mode 100644 index 0000000000..911d1f29a5 --- /dev/null +++ b/libraries/SITL/SIM_Sailboat.h @@ -0,0 +1,56 @@ +/* + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + */ +/* + sailboat simulator class +*/ + +#pragma once + +#include "SIM_Aircraft.h" + +namespace SITL { + +/* + a sailboat simulator + */ +class Sailboat : public Aircraft { +public: + Sailboat(const char *home_str, const char *frame_str); + + /* update model by one time step */ + void update(const struct sitl_input &input); + + /* static object creator */ + static Aircraft *create(const char *home_str, const char *frame_str) { + return new Sailboat(home_str, frame_str); + } + +private: + + void calc_lift_and_drag(float wind_speed, float angle_of_attack_deg, float& lift, float& drag); + float turn_circle(float steering); + float calc_yaw_rate(float steering, float speed); + float calc_lat_accel(float steering_angle, float speed); + + float max_wheel_turn; + float turning_circle; + + // 10 point curves for lift and drag. index is angle/10deg + // angle-of-attack 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170+ + float lift_curve[18] = {0.00f, 0.00f, 0.80f, 1.00f, 0.95f, 0.75f, 0.60f, 0.40f, 0.20f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f, 0.00f}; + float drag_curve[18] = {0.10f, 0.10f, 0.12f, 0.15f, 0.20f, 0.27f, 0.35f, 0.50f, 0.70f, 1.00f, 0.70f, 0.50f, 0.35f, 0.27f, 0.20f, 0.15f, 0.12f, 0.10f}; +}; + +} // namespace SITL