uncrustify libraries/AP_IMU/AP_IMU_INS.h

This commit is contained in:
uncrustify 2012-08-16 23:19:49 -07:00 committed by Pat Hickey
parent 5601c52c46
commit 7f57d462d0

View File

@ -26,66 +26,90 @@ public:
/// @param adc Pointer to the AP_ADC instance that is connected to the gyro and accelerometer.
/// @param key The AP_Var::key value we will use when loading/saving calibration data.
///
AP_IMU_INS(AP_InertialSensor *ins) :
AP_IMU_INS(AP_InertialSensor *ins) :
_ins(ins)
{
_product_id = AP_PRODUCT_ID_NONE; // set during hardware init
}
{
_product_id = AP_PRODUCT_ID_NONE; // set during hardware init
}
/// Do warm or cold start.
///
/// @note For a partial-warmstart where e.g. the accelerometer calibration should be preserved
/// but the gyro cal needs to be re-performed, start with ::init(WARM_START) to load the
/// previous calibration settings, then force a re-calibration of the gyro with ::init_gyro.
///
/// @param style Selects the initialisation style.
/// COLD_START performs calibration of both the accelerometer and gyro.
/// WARM_START loads accelerometer and gyro calibration from a previous cold start.
///
virtual void init( Start_style style = COLD_START,
void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL,
AP_PeriodicProcess *scheduler = NULL );
/// Do warm or cold start.
///
/// @note For a partial-warmstart where e.g. the accelerometer calibration should be preserved
/// but the gyro cal needs to be re-performed, start with ::init(WARM_START) to load the
/// previous calibration settings, then force a re-calibration of the gyro with ::init_gyro.
///
/// @param style Selects the initialisation style.
/// COLD_START performs calibration of both the accelerometer and gyro.
/// WARM_START loads accelerometer and gyro calibration from a previous cold start.
///
virtual void init( Start_style style = COLD_START,
void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL,
AP_PeriodicProcess * scheduler = NULL );
virtual void save();
virtual void init_accel(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual void init_gyro(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual bool update(void);
virtual bool new_data_available(void);
virtual void save();
virtual void init_accel(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual void init_gyro(void (*delay_cb)(unsigned long t) = delay,
void (*flash_leds_cb)(bool on) = NULL);
virtual bool update(void);
virtual bool new_data_available(void);
// for jason
virtual float gx() { return _sensor_cal[0]; }
virtual float gy() { return _sensor_cal[1]; }
virtual float gz() { return _sensor_cal[2]; }
virtual float ax() { return _sensor_cal[3]; }
virtual float ay() { return _sensor_cal[4]; }
virtual float az() { return _sensor_cal[5]; }
// for jason
virtual float gx() {
return _sensor_cal[0];
}
virtual float gy() {
return _sensor_cal[1];
}
virtual float gz() {
return _sensor_cal[2];
}
virtual float ax() {
return _sensor_cal[3];
}
virtual float ay() {
return _sensor_cal[4];
}
virtual float az() {
return _sensor_cal[5];
}
virtual void gx(const float v) {
_sensor_cal[0] = v;
}
virtual void gy(const float v) {
_sensor_cal[1] = v;
}
virtual void gz(const float v) {
_sensor_cal[2] = v;
}
virtual void ax(const float v) {
_sensor_cal[3] = v;
}
virtual void ay(const float v) {
_sensor_cal[4] = v;
}
virtual void az(const float v) {
_sensor_cal[5] = v;
}
virtual float get_gyro_drift_rate(void);
virtual void gx(const float v) { _sensor_cal[0] = v; }
virtual void gy(const float v) { _sensor_cal[1] = v; }
virtual void gz(const float v) { _sensor_cal[2] = v; }
virtual void ax(const float v) { _sensor_cal[3] = v; }
virtual void ay(const float v) { _sensor_cal[4] = v; }
virtual void az(const float v) { _sensor_cal[5] = v; }
virtual float get_gyro_drift_rate(void);
private:
AP_InertialSensor *_ins; ///< INS provides an axis and unit correct sensor source.
AP_InertialSensor * _ins; ///< INS provides an axis and unit correct sensor source.
virtual void _init_accel(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
virtual void _init_gyro(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
virtual void _init_accel(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
virtual void _init_gyro(void (*delay_cb)(unsigned long t),
void (*flash_leds_cb)(bool on) = NULL); ///< no-save implementation
float _calibrated(uint8_t channel, float ins_value);
float _calibrated(uint8_t channel, float ins_value);
// Gyro and Accelerometer calibration criteria
//
static const float _accel_total_cal_change = 4.0;
static const float _accel_max_cal_offset = 250.0;
// Gyro and Accelerometer calibration criteria
//
static const float _accel_total_cal_change = 4.0;
static const float _accel_max_cal_offset = 250.0;
};