HAL_SITL: cleanup SITL airspeed handling
fixed handling of EAS2TAS, and fixed ratio per sensor. Removed the wind delay code (which was never being used). We should add a generic delay filter if we need this again
This commit is contained in:
parent
2dea725d80
commit
7dc5da1247
@ -109,22 +109,6 @@ private:
|
||||
|
||||
const char *_fg_address;
|
||||
|
||||
// delay buffer variables
|
||||
static const uint8_t wind_buffer_length = 50;
|
||||
|
||||
// airspeed sensor delay buffer variables
|
||||
struct readings_wind {
|
||||
uint32_t time;
|
||||
float data;
|
||||
};
|
||||
uint8_t store_index_wind;
|
||||
uint32_t last_store_time_wind;
|
||||
VectorN<readings_wind,wind_buffer_length> buffer_wind;
|
||||
VectorN<readings_wind,wind_buffer_length> buffer_wind_2;
|
||||
uint32_t time_delta_wind;
|
||||
uint32_t delayed_time_wind;
|
||||
uint32_t wind_start_delay_micros;
|
||||
|
||||
// internal SITL model
|
||||
SITL::Aircraft *sitl_model;
|
||||
|
||||
|
@ -35,10 +35,10 @@ float ADCSource::read_latest() {
|
||||
return _sitlState->sonar_pin_value;
|
||||
|
||||
case 1:
|
||||
return _sitlState->airspeed_pin_value;
|
||||
return _sitlState->airspeed_pin_value[0];
|
||||
|
||||
case 2:
|
||||
return _sitlState->airspeed_2_pin_value;
|
||||
return _sitlState->airspeed_pin_value[1];
|
||||
|
||||
case 12:
|
||||
return _sitlState->current_pin_value;
|
||||
|
@ -41,8 +41,7 @@ public:
|
||||
|
||||
// simulated airspeed, sonar and battery monitor
|
||||
uint16_t sonar_pin_value; // pin 0
|
||||
uint16_t airspeed_pin_value; // pin 1
|
||||
uint16_t airspeed_2_pin_value; // pin 2
|
||||
uint16_t airspeed_pin_value[2]; // pin 1
|
||||
uint16_t voltage_pin_value; // pin 13
|
||||
uint16_t current_pin_value; // pin 12
|
||||
uint16_t voltage2_pin_value; // pin 15
|
||||
|
@ -96,8 +96,7 @@ public:
|
||||
|
||||
// simulated airspeed, sonar and battery monitor
|
||||
uint16_t sonar_pin_value; // pin 0
|
||||
uint16_t airspeed_pin_value; // pin 1
|
||||
uint16_t airspeed_2_pin_value; // pin 2
|
||||
uint16_t airspeed_pin_value[AIRSPEED_MAX_SENSORS]; // pin 1
|
||||
uint16_t voltage_pin_value; // pin 13
|
||||
uint16_t current_pin_value; // pin 12
|
||||
uint16_t voltage2_pin_value; // pin 15
|
||||
@ -186,7 +185,6 @@ private:
|
||||
uint8_t store_index_wind;
|
||||
uint32_t last_store_time_wind;
|
||||
VectorN<readings_wind,wind_buffer_length> buffer_wind;
|
||||
VectorN<readings_wind,wind_buffer_length> buffer_wind_2;
|
||||
uint32_t time_delta_wind;
|
||||
uint32_t delayed_time_wind;
|
||||
uint32_t wind_start_delay_micros;
|
||||
|
@ -20,101 +20,67 @@ extern const AP_HAL::HAL& hal;
|
||||
|
||||
using namespace HALSITL;
|
||||
|
||||
// return current scale factor that converts from equivalent to true airspeed
|
||||
// valid for altitudes up to 10km AMSL
|
||||
// assumes standard atmosphere lapse rate
|
||||
static float get_EAS2TAS(float altitude)
|
||||
{
|
||||
float pressure = AP::baro().get_pressure();
|
||||
if (is_zero(pressure)) {
|
||||
return 1.0f;
|
||||
}
|
||||
|
||||
float sigma, delta, theta;
|
||||
AP_Baro::SimpleAtmosphere(altitude * 0.001, sigma, delta, theta);
|
||||
|
||||
float tempK = C_TO_KELVIN(25) - ISA_LAPSE_RATE * altitude;
|
||||
const float eas2tas_squared = SSL_AIR_DENSITY / (pressure / (ISA_GAS_CONSTANT * tempK));
|
||||
if (!is_positive(eas2tas_squared)) {
|
||||
return 1.0;
|
||||
}
|
||||
return sqrtf(eas2tas_squared);
|
||||
}
|
||||
|
||||
/*
|
||||
convert airspeed in m/s to an airspeed sensor value
|
||||
*/
|
||||
void SITL_State::_update_airspeed(float airspeed)
|
||||
void SITL_State::_update_airspeed(float true_airspeed)
|
||||
{
|
||||
float airspeed2 = airspeed;
|
||||
const float airspeed_ratio = 1.9936f;
|
||||
const float diff_pressure = sq(airspeed) * 0.5;
|
||||
for (uint8_t i=0; i<AIRSPEED_MAX_SENSORS; i++) {
|
||||
const auto &arspd = _sitl->airspeed[i];
|
||||
float airspeed = true_airspeed / get_EAS2TAS(_sitl->state.altitude);
|
||||
const float diff_pressure = sq(airspeed) / arspd.ratio;
|
||||
float airspeed_raw;
|
||||
|
||||
// apply noise to the differential pressure. This emulates the way
|
||||
// airspeed noise reduces with speed
|
||||
airspeed = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[0] * rand_float())));
|
||||
airspeed2 = sqrtf(fabsf(2*(diff_pressure + _sitl->arspd_noise[1] * rand_float())));
|
||||
// apply noise to the differential pressure. This emulates the way
|
||||
// airspeed noise reduces with speed
|
||||
airspeed = sqrtf(fabsf(arspd.ratio*(diff_pressure + arspd.noise * rand_float())));
|
||||
|
||||
// check sensor failure
|
||||
if (is_positive(_sitl->arspd_fail[0])) {
|
||||
airspeed = _sitl->arspd_fail[0];
|
||||
}
|
||||
if (is_positive(_sitl->arspd_fail[1])) {
|
||||
airspeed2 = _sitl->arspd_fail[1];
|
||||
}
|
||||
|
||||
if (!is_zero(_sitl->arspd_fail_pressure[0])) {
|
||||
// compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude
|
||||
// algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure
|
||||
float tube_pressure = fabsf(_sitl->arspd_fail_pressure[0] - AP::baro().get_pressure() + _sitl->arspd_fail_pitot_pressure[0]);
|
||||
airspeed = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0));
|
||||
}
|
||||
if (!is_zero(_sitl->arspd_fail_pressure[1])) {
|
||||
// compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude
|
||||
// algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure
|
||||
float tube_pressure = fabsf(_sitl->arspd_fail_pressure[1] - AP::baro().get_pressure() + _sitl->arspd_fail_pitot_pressure[1]);
|
||||
airspeed2 = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0));
|
||||
}
|
||||
|
||||
float airspeed_pressure = (airspeed * airspeed) / airspeed_ratio;
|
||||
float airspeed2_pressure = (airspeed2 * airspeed2) / airspeed_ratio;
|
||||
|
||||
// flip sign here for simulating reversed pitot/static connections
|
||||
if (_sitl->arspd_signflip) airspeed_pressure *= -1;
|
||||
if (_sitl->arspd_signflip) airspeed2_pressure *= -1;
|
||||
|
||||
// apply airspeed sensor offset in m/s
|
||||
float airspeed_raw = airspeed_pressure + _sitl->arspd_offset[0];
|
||||
float airspeed2_raw = airspeed2_pressure + _sitl->arspd_offset[1];
|
||||
|
||||
_sitl->state.airspeed_raw_pressure[0] = airspeed_pressure;
|
||||
_sitl->state.airspeed_raw_pressure[1] = airspeed2_pressure;
|
||||
|
||||
if (airspeed_raw / 4 > 0xFFFF) {
|
||||
airspeed_pin_value = 0xFFFF;
|
||||
return;
|
||||
}
|
||||
if (airspeed2_raw / 4 > 0xFFFF) {
|
||||
airspeed_2_pin_value = 0xFFFF;
|
||||
return;
|
||||
}
|
||||
// add delay
|
||||
const uint32_t now = AP_HAL::millis();
|
||||
uint32_t best_time_delta_wind = 200; // initialise large time representing buffer entry closest to current time - delay.
|
||||
uint8_t best_index_wind = 0; // initialise number representing the index of the entry in buffer closest to delay.
|
||||
|
||||
// storing data from sensor to buffer
|
||||
if (now - last_store_time_wind >= 10) { // store data every 10 ms.
|
||||
last_store_time_wind = now;
|
||||
if (store_index_wind > wind_buffer_length - 1) { // reset buffer index if index greater than size of buffer
|
||||
store_index_wind = 0;
|
||||
// check sensor failure
|
||||
if (is_positive(arspd.fail)) {
|
||||
airspeed = arspd.fail;
|
||||
}
|
||||
buffer_wind[store_index_wind].data = airspeed_raw; // add data to current index
|
||||
buffer_wind[store_index_wind].time = last_store_time_wind; // add time to current index
|
||||
buffer_wind_2[store_index_wind].data = airspeed2_raw; // add data to current index
|
||||
buffer_wind_2[store_index_wind].time = last_store_time_wind; // add time to current index
|
||||
store_index_wind = store_index_wind + 1; // increment index
|
||||
}
|
||||
|
||||
// return delayed measurement
|
||||
delayed_time_wind = now - _sitl->wind_delay; // get time corresponding to delay
|
||||
// find data corresponding to delayed time in buffer
|
||||
for (uint8_t i = 0; i <= wind_buffer_length - 1; i++) {
|
||||
// find difference between delayed time and time stamp in buffer
|
||||
time_delta_wind = abs(
|
||||
(int32_t)(delayed_time_wind - buffer_wind[i].time));
|
||||
// if this difference is smaller than last delta, store this time
|
||||
if (time_delta_wind < best_time_delta_wind) {
|
||||
best_index_wind = i;
|
||||
best_time_delta_wind = time_delta_wind;
|
||||
if (!is_zero(arspd.fail_pressure)) {
|
||||
// compute a realistic pressure report given some level of trapper air pressure in the tube and our current altitude
|
||||
// algorithm taken from https://en.wikipedia.org/wiki/Calibrated_airspeed#Calculation_from_impact_pressure
|
||||
float tube_pressure = fabsf(arspd.fail_pressure - AP::baro().get_pressure() + arspd.fail_pitot_pressure);
|
||||
airspeed = 340.29409348 * sqrt(5 * (pow((tube_pressure / SSL_AIR_PRESSURE + 1), 2.0/7.0) - 1.0));
|
||||
}
|
||||
}
|
||||
if (best_time_delta_wind < 200) { // only output stored state if < 200 msec retrieval error
|
||||
airspeed_raw = buffer_wind[best_index_wind].data;
|
||||
airspeed2_raw = buffer_wind_2[best_index_wind].data;
|
||||
}
|
||||
float airspeed_pressure = (airspeed * airspeed) / arspd.ratio;
|
||||
|
||||
airspeed_pin_value = airspeed_raw / 4;
|
||||
airspeed_2_pin_value = airspeed2_raw / 4;
|
||||
// flip sign here for simulating reversed pitot/static connections
|
||||
if (arspd.signflip) {
|
||||
airspeed_pressure *= -1;
|
||||
}
|
||||
|
||||
// apply airspeed sensor offset in m/s
|
||||
airspeed_raw = airspeed_pressure + arspd.offset;
|
||||
|
||||
_sitl->state.airspeed_raw_pressure[i] = airspeed_pressure;
|
||||
|
||||
airspeed_pin_value[i] = MIN(0xFFFF, airspeed_raw / 4);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user