Copter: refactor and split out wind compensation

This commit is contained in:
Randy Mackay 2014-04-10 15:55:54 +09:00
parent d9c685323a
commit 754bae5748

View File

@ -5,20 +5,25 @@
* hybrid tries to improve upon regular loiter by mixing the pilot input with the loiter controller
*/
#define SPEED_0 10
#define LOITER_STAB_TIMER 300 // ST-JD : Must be higher than BRAKE_LOIT_MIX_TIMER (twice is a good deal) set it from 100 to 500, the number of centiseconds between loiter engage and getting wind_comp (once loiter stabilized)
#define BRAKE_LOIT_MIX_TIMER 150 // ST-JD : Must be lower than LOITER_STAB_TIMER set it from 100 to 200, the number of centiseconds brake and loiter commands are mixed to make a smooth transition.
#define LOITER_MAN_MIX_TIMER 50 // ST-JD : set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
#define HYBRID_THROTTLE_FACTOR 1.3f // Need param? Used to define the min and max throttle from the throttle_cruise in hybrid mode. Should be between 1,1 (smooth) and 1,5 (strong)
#define THROTTLE_HYBRID_MAN 0
#define THROTTLE_HYBRID_AH 1
#define THROTTLE_HYBRID_BK 3
#define HYBRID_SPEED_0 10 //
#define HYBRID_LOITER_STAB_TIMER 300 // Must be higher than HYBRID_BRAKE_LOITER_MIX_TIMER (twice is a good deal) set it from 100 to 500, the number of centiseconds between loiter engage and getting wind_comp (once loiter stabilized)
#define HYBRID_BRAKE_LOITER_MIX_TIMER 150 // Number of cycles to transition from brake mode to loiter mode. Must be lower than HYBRID_LOITER_STAB_TIMER
#define HYBRID_LOITER_MAN_MIX_TIMER 50 // Set it from 100 to 200, the number of centiseconds loiter and manual commands are mixed to make a smooth transition.
#define HYBRID_SMOOTH_RATE_FACTOR 0.04f // controls the smoothness of the transition from ?? to ??. 0.04 = longer smoother transitions, 0.07 means faster transitions
#define HYBRID_STICK_RELEASE_SMOOTH_ANGLE 1800 // max angle required (in centi-degrees) after which the smooth stick release effect is applied
#define HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX 10 // wind compensation estimates will only run when velocity is at or below this speed in cm/s
// declare some function to keep compiler happy
static void hybrid_update_wind_comp_estimate();
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle);
// mission state enumeration
enum hybrid_rp_mode {
HYBRID_PILOT_OVERRIDE=0,
HYBRID_BRAKE=1,
HYBRID_LOITER=2
HYBRID_BRAKE_TO_LOITER=2,
HYBRID_LOITER=3,
HYBRID_LOITER_TO_PILOT_OVERRIDE=4
};
static struct {
@ -27,28 +32,32 @@ static struct {
uint8_t loiter_engaged : 1; // 1 if loiter target has been set and loiter controller is running
} hybrid;
static int16_t brake_roll = 0,brake_pitch = 0;
static float K_brake;
static uint8_t throttle_mode=THROTTLE_HYBRID_MAN;
// wind compensation related variables
static Vector2f wind_comp_ef; // wind compensation in earth frame, filtered lean angles from position controller
static int16_t wind_offset_roll, wind_offset_pitch; // wind offsets for pitch/roll
static int8_t wind_offset_timer; // counter to reduce wind_offset calcs to 10hz
static int16_t wind_comp_start_timer; // counter to delay start of wind compensation calcs until loiter has settled
static float wind_comp_x, wind_comp_y;// ST-JD : wind compensation vector, averaged I terms from loiter controller
static int16_t wind_offset_roll,wind_offset_pitch; // ST-JD : wind offsets for pitch/roll
static int16_t timeout_roll, timeout_pitch; // seconds - time allowed for the braking to complete, this timeout will be updated at half-braking
static int16_t loiter_stab_timer; // loiter stabilization timer: we read pid's I terms in wind_comp only after this time from loiter start
static bool timeout_roll_updated, timeout_pitch_updated; // Allow the timeout to be updated only once per braking.
static int16_t brake_max_roll, brake_max_pitch; // used to detect half braking
static int16_t loiter_roll,loiter_pitch; // store pitch/roll at loiter exit
// breaking related variables
static float brake_gain; // gain used during conversion of vehicle's velocity to lean angle during braking (calculated from brake_rate)
static int16_t brake_roll = 0, brake_pitch = 0; // target roll and pitch angles during both pilot-override and braking periods. Updated during pilot override to match pilot's input
static int16_t brake_timeout_roll, brake_timeout_pitch; // time in seconds allowed for the braking to complete, this timeout will be updated at half-braking
static int16_t brake_roll_max, brake_pitch_max; // used to detect half braking
static float brake_loiter_mix; // varies from 0 to 1, allows a smooth loiter engage
static bool brake_timeout_roll_updated, brake_timeout_pitch_updated; // Allow the timeout to be updated only once per braking.
// loiter related variables
static float loiter_man_mix; // varies from 0 to 1, allow a smooth loiter to manual transition
static int16_t loiter_man_timer;
static int8_t update_wind_offset_timer; // update wind_offset decimator (10Hz)
static int16_t loiter_roll, loiter_pitch; // store pitch/roll at loiter exit
// hybrid_init - initialise hybrid controller
static bool hybrid_init(bool ignore_checks)
{
/*
if (GPS_ok() || ignore_checks) {
// fail to initialise hybrid mode if no GPS lock
if (!GPS_ok() && !ignore_checks) {
return false;
}
// set target to current position
wp_nav.init_loiter_target();
@ -59,8 +68,8 @@ static bool hybrid_init(bool ignore_checks)
// initialise altitude target to stopping point
pos_control.set_target_to_stopping_point_z();
// compute K_brake
K_brake=(15.0f*(float)wp_nav._brake_rate+95.0f)/100.0f;
// compute brake_gain
brake_gain = (15.0f * (float)wp_nav._brake_rate + 95.0f) / 100.0f;
if (ap.land_complete) {
// Loiter start
@ -72,39 +81,35 @@ static bool hybrid_init(bool ignore_checks)
hybrid.pitch_mode = HYBRID_PILOT_OVERRIDE;
}
wind_comp_x=wind_comp_y=0; // Init wind_comp (ef). For now, resetted each time hybrid is switched on
wind_offset_roll=0; // Init offset angles
wind_offset_pitch=0;
update_wind_offset_timer=0; // Init wind offset computation timer
loiter_stab_timer=LOITER_STAB_TIMER;
return true;
}else{
return false;
}
*/
// initialise wind_comp (ef) each time hybrid is switched on
wind_comp_ef.zero();
// initialise offset angles
wind_offset_roll = wind_offset_pitch = 0;
// initialise wind offset computation and loiter-stab transition timer
wind_offset_timer = 0;
loiter_stab_timer = HYBRID_LOITER_STAB_TIMER;
return true;
}
// hybrid_exit - restore position controller
static void hybrid_exit()
{
/*
pos_control.init_I = true; // restore reset I for normal behaviour
*/
}
// hybrid_run - runs the hybrid controller
// should be called at 100hz or more
static void hybrid_run()
{
/*
float target_yaw_rate = 0;
float target_climb_rate = 0;
int16_t target_roll, target_pitch; // pilot's roll and pitch angle inputs
int16_t pilot_throttle_scaled = 0; // pilot's throttle input
float target_yaw_rate = 0; // pilot desired yaw rate in centi-degrees/sec
float target_climb_rate = 0; // pilot desired climb rate in centimeters/sec
float vel_fw, vel_right; // vehicle's current velocity in body-frame forward and right directions
const Vector3f& vel = inertial_nav.get_velocity();
float vel_fw, vel_right;
int16_t target_roll, target_pitch;
int16_t pilot_throttle_scaled=0;
// if not auto armed set throttle to zero and exit immediately
if(!ap.auto_armed || !inertial_nav.position_ok()) {
@ -144,33 +149,35 @@ static void hybrid_run()
// convert pilot input to lean angles
get_pilot_desired_lean_angles(g.rc_1.control_in, g.rc_2.control_in, target_roll, target_pitch);
// calculate earth-frame velocities
// convert inertial nav earth-frame velocities to body-frame
// To-Do: move this to AP_Math (or perhaps we already have a function to do this)
vel_fw = vel.x*ahrs.cos_yaw() + vel.y*ahrs.sin_yaw();
vel_right = -vel.x*ahrs.sin_yaw() + vel.y*ahrs.cos_yaw();
// get roll stick input
if (target_roll != 0) {
// roll stick input detected set roll mode to pilot override
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE; // Set stab roll mode
// roll stick input detected, set roll mode to pilot override
hybrid.roll_mode = HYBRID_PILOT_OVERRIDE;
} else {
// stick released from stab and copter horizontal (at wind comp) => transition mode
// roll stick is centered
// if still in pilot override mode and breaking will complete within 0.5seconds switch to braking mode
if ((hybrid.roll_mode == HYBRID_PILOT_OVERRIDE) && (abs(brake_roll) < 2*wp_nav._brake_rate)) {
hybrid.roll_mode = HYBRID_BRAKE; // Set brake roll mode
brake_roll = 0; // this avoid false brake_timeout computing
timeout_roll = 600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking
timeout_roll_updated = false; // Allow the timeout to be updated only once
brake_max_roll = 0; // used to detect half braking
brake_timeout_roll = 600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking
brake_timeout_roll_updated = false; // Allow the timeout to be updated only once
brake_roll_max = 0; // used to detect half braking
} else { // manage brake-to-loiter transition
// brake timeout
if (timeout_roll > 0) {
timeout_roll--;
if (brake_timeout_roll > 0) {
brake_timeout_roll--;
}
// Changed loiter engage : not once speed_0 reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather)
if ((fabs(vel_right) < SPEED_0) && (timeout_roll>50)) {
timeout_roll = 50; // let 0.5s between brake reaches speed_0 and loiter engage
// Changed loiter engage : not once HYBRID_SPEED_0 is reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather)
if ((fabs(vel_right) < HYBRID_SPEED_0) && (brake_timeout_roll>50)) {
brake_timeout_roll = 50; // let 0.5s between brake reaches HYBRID_SPEED_0 and loiter engage
}
if ((hybrid.roll_mode == HYBRID_BRAKE) && (timeout_roll==0)){ //stick released and transition finished (speed 0) or brake timeout => loiter mode
if ((hybrid.roll_mode == HYBRID_BRAKE) && (brake_timeout_roll==0)){ //stick released and transition finished (speed 0) or brake timeout => loiter mode
hybrid.roll_mode = HYBRID_LOITER; // Set loiter roll mode
}
}
@ -184,34 +191,35 @@ static void hybrid_run()
if((hybrid.pitch_mode == HYBRID_PILOT_OVERRIDE) && (abs(brake_pitch) < 2*wp_nav._brake_rate)){ // stick released from stab and copter horizontal (at wind_comp) => transition mode
hybrid.pitch_mode = HYBRID_BRAKE; // Set brake pitch mode
brake_pitch = 0; // this avoid false brake_timeout computing
timeout_pitch=600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking
timeout_pitch_updated = false; // Allow the timeout to be updated only once
brake_max_pitch=0; // used to detect half braking
brake_timeout_pitch = 600; // seconds*0.01 - time allowed for the braking to complete, updated at half-braking
brake_timeout_pitch_updated = false;// Allow the timeout to be updated only once
brake_pitch_max = 0; // used to detect half braking
}else{ // manage brake-to-loiter transition
// brake timeout
if (timeout_pitch>0) timeout_pitch--;
// Changed loiter engage : not once speed_0 reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather)
if ((fabs(vel_fw)<SPEED_0) && (timeout_pitch>50)) {
timeout_pitch = 50; // let 0.5s between brake reaches speed_0 and loiter engage
if (brake_timeout_pitch > 0) {
brake_timeout_pitch--;
}
if ((hybrid.pitch_mode == HYBRID_BRAKE) && (timeout_pitch == 0)) {
// Changed loiter engage : not once HYBRID_SPEED_0 is reached but after a little delay that let the copter stabilize if it remains some rate. (maybe compare omega.x/y rather)
if ((fabs(vel_fw) < HYBRID_SPEED_0) && (brake_timeout_pitch > 50)) {
brake_timeout_pitch = 50; // let 0.5s between brake reaches HYBRID_SPEED_0 and loiter engage
}
if ((hybrid.pitch_mode == HYBRID_BRAKE) && (brake_timeout_pitch == 0)) {
hybrid.pitch_mode = HYBRID_LOITER; // Set loiter pitch mode
}
}
}
// manual roll/pitch with smooth decrease filter
// roll
// manual roll with smooth decrease filter
if (hybrid.roll_mode == HYBRID_PILOT_OVERRIDE) {
if (((long)brake_roll*(long)target_roll>=0) && (abs(target_roll)<STICK_RELEASE_SMOOTH_ANGLE)) {
if (((int32_t)brake_roll * (int32_t)target_roll >= 0) && (abs(target_roll) < HYBRID_STICK_RELEASE_SMOOTH_ANGLE)) {
// Smooth decrease only when we want to stop, not if we have to quickly change direction
if (brake_roll > 0){ // we use brake_roll to save mem usage and also because it will be natural transition with brake mode.
// rate decrease
brake_roll -= max((float)brake_roll*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate);
brake_roll -= max((float)brake_roll * HYBRID_SMOOTH_RATE_FACTOR, wp_nav._brake_rate);
// use the max value if we increase and because we could have a smoother manual decrease than this computed value
brake_roll = max(brake_roll,target_roll);
}else{
brake_roll += max(-(float)brake_roll*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate);
brake_roll += max(-(float)brake_roll * HYBRID_SMOOTH_RATE_FACTOR, wp_nav._brake_rate);
brake_roll = min(brake_roll,target_roll);
}
} else {
@ -219,53 +227,54 @@ static void hybrid_run()
}
}
// pitch
// manual pitch with smooth decrease filter
if (hybrid.pitch_mode == HYBRID_PILOT_OVERRIDE) {
if (((long)brake_pitch*(long)target_pitch>=0)&&(abs(target_pitch)<STICK_RELEASE_SMOOTH_ANGLE)){ //Smooth decrease only when we want to stop, not if we have to quickly change direction
if (((int32_t)brake_pitch * (int32_t)target_pitch >= 0) && (abs(target_pitch) < HYBRID_STICK_RELEASE_SMOOTH_ANGLE)) { //Smooth decrease only when we want to stop, not if we have to quickly change direction
if (brake_pitch > 0) { // we use brake_pitch to save mem usage and also because it will be natural transition with brake mode.
brake_pitch-=max((float)brake_pitch*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate); //rate decrease
brake_pitch -= max((float)brake_pitch * HYBRID_SMOOTH_RATE_FACTOR, wp_nav._brake_rate); //rate decrease
brake_pitch = max(brake_pitch,target_pitch); // use the max value because we could have a smoother manual decrease than this computed value
} else {
brake_pitch += max(-(float)brake_pitch*(float)wp_nav._smooth_rate_factor/100,wp_nav._brake_rate);
brake_pitch += max(-(float)brake_pitch * HYBRID_SMOOTH_RATE_FACTOR, wp_nav._brake_rate);
brake_pitch = min(brake_pitch,target_pitch);
}
} else {
brake_pitch = target_pitch;
}
}
// braking update: roll
if (hybrid.roll_mode >= HYBRID_BRAKE) { // Roll: allow braking update to run also during loiter
if (vel_right >= 0) { // negative roll = go left, positive roll = go right
brake_roll = max(brake_roll-wp_nav._brake_rate, max((-K_brake*vel_right*(1.0f+500.0f/(vel_right+60.0f))),-wp_nav._max_braking_angle)); // centidegrees
brake_roll = max(brake_roll-wp_nav._brake_rate, max((-brake_gain*vel_right*(1.0f+500.0f/(vel_right+60.0f))),-wp_nav._max_braking_angle));
}else{
brake_roll = min(brake_roll+wp_nav._brake_rate, min((-K_brake*vel_right*(1.0f+500.0f/(-vel_right+60.0f))),wp_nav._max_braking_angle)); // centidegrees
brake_roll = min(brake_roll+wp_nav._brake_rate, min((-brake_gain*vel_right*(1.0f+500.0f/(-vel_right+60.0f))),wp_nav._max_braking_angle));
}
if (abs(brake_roll) > brake_max_roll) { // detect half braking and update timeout
brake_max_roll = abs(brake_roll);
} else if (!timeout_roll_updated){
timeout_roll = 1+(uint16_t)(15L*(long)(abs(brake_roll))/(10L*(long)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
timeout_roll_updated = true;
if (abs(brake_roll) > brake_roll_max) { // detect half braking and update timeout
brake_roll_max = abs(brake_roll);
} else if (!brake_timeout_roll_updated) {
brake_timeout_roll = 1+(uint16_t)(15L*(int32_t)(abs(brake_roll))/(10L*(int32_t)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
brake_timeout_roll_updated = true;
}
}
// braking update: pitch
if (hybrid.pitch_mode >= HYBRID_BRAKE) { // Pitch: allow braking update to run also during loiter
if (vel_fw >= 0) { // positive pitch = go backward, negative pitch = go forward
brake_pitch = min(brake_pitch+wp_nav._brake_rate,min((K_brake*vel_fw*(1.0f+(500.0f/(vel_fw+60.0f)))),wp_nav._max_braking_angle)); // centidegrees
brake_pitch = min(brake_pitch+wp_nav._brake_rate,min((brake_gain*vel_fw*(1.0f+(500.0f/(vel_fw+60.0f)))),wp_nav._max_braking_angle)); // centidegrees
} else {
brake_pitch = max(brake_pitch-wp_nav._brake_rate,max((K_brake*vel_fw*(1.0f-(500.0f/(vel_fw-60.0f)))),-wp_nav._max_braking_angle)); // centidegrees
brake_pitch = max(brake_pitch-wp_nav._brake_rate,max((brake_gain*vel_fw*(1.0f-(500.0f/(vel_fw-60.0f)))),-wp_nav._max_braking_angle)); // centidegrees
}
if (abs(brake_pitch)>brake_max_pitch){ // detect half braking and update timeout
brake_max_pitch=abs(brake_pitch);
} else if (!timeout_pitch_updated){
if (abs(brake_pitch)>brake_pitch_max){ // detect half braking and update timeout
brake_pitch_max = abs(brake_pitch);
} else if (!brake_timeout_pitch_updated){
// Changes 12 by 15 to let the brake=>loiter 0.5s happens before this timeout ends
timeout_pitch = 1+(int16_t)(15L*(long)(abs(brake_pitch))/(10L*(long)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
timeout_pitch_updated = true;
brake_timeout_pitch = 1+(int16_t)(15L*(int32_t)(abs(brake_pitch))/(10L*(int32_t)wp_nav._brake_rate)); // the 1.2 (12/10) factor has to be tuned in flight, here it means 120% of the "normal" time.
brake_timeout_pitch_updated = true;
}
}
// loiter to manual mix
if ((hybrid.pitch_mode==HYBRID_PILOT_OVERRIDE)||(hybrid.roll_mode==HYBRID_PILOT_OVERRIDE)) {
if (!ap.land_complete && loiter_man_timer!=0) {
loiter_man_mix = constrain_float((float)(loiter_man_timer)/(float)LOITER_MAN_MIX_TIMER, 0, 1.0);//constrain_float((float)(LOITER_MAN_MIX_TIMER-loiter_man_timer)/(float)LOITER_MAN_MIX_TIMER, 0, 1.0);
if (loiter_man_timer !=0 ) {
loiter_man_mix = constrain_float((float)(loiter_man_timer)/(float)HYBRID_LOITER_MAN_MIX_TIMER, 0, 1.0);
loiter_man_timer--;
}
}
@ -273,20 +282,20 @@ static void hybrid_run()
if (hybrid.pitch_mode == HYBRID_LOITER && hybrid.roll_mode == HYBRID_LOITER) {
// while loitering, updates average lat/lon wind offset angles from I terms
if (hybrid.loiter_engaged) {
if (!ap.land_complete && loiter_stab_timer!=0) {
if (loiter_stab_timer != 0) {
loiter_stab_timer--;
} else if (max(fabs(vel.x),fabs(vel.y))<SPEED_0) { //Or maybe 2*, 3* speed_0...
if (wind_comp_x==0) wind_comp_x=pos_control.get_desired_acc_x(); else wind_comp_x=(0.97f*wind_comp_x+0.03f*pos_control.get_desired_acc_x());
if (wind_comp_y==0) wind_comp_y=pos_control.get_desired_acc_y(); else wind_comp_y=(0.97f*wind_comp_y+0.03f*pos_control.get_desired_acc_y());
} else {
// update wind compensation estimate
hybrid_update_wind_comp_estimate();
}
// Brake_Loiter commands mix factor
brake_loiter_mix = constrain_float((float)(LOITER_STAB_TIMER-loiter_stab_timer)/(float)BRAKE_LOIT_MIX_TIMER, 0, 1.0);
brake_loiter_mix = constrain_float((float)(HYBRID_LOITER_STAB_TIMER-loiter_stab_timer)/(float)HYBRID_BRAKE_LOITER_MIX_TIMER, 0, 1.0);
} else {
hybrid.loiter_engaged = true; // turns on NAV_HYBRID if both sticks are at rest
pos_control.init_I=false; // restore previous i_terms in Reset_I() => to avoid the stop_and_go effect
pos_control.init_I = false; // stop I terms from being cleared when init_loiter_target is called. avoids the stop_and_go effect
wp_nav.init_loiter_target(); // init loiter controller and sets XY stopping point
pos_control.set_target_to_stopping_point_z(); // init altitude
loiter_stab_timer=LOITER_STAB_TIMER; // starts a 3 seconds timer
loiter_stab_timer = HYBRID_LOITER_STAB_TIMER; // starts a 3 seconds timer
brake_roll = 1; // required for next mode_1 smooth stick release and to avoid twitch
brake_pitch = 1; // required for next mode_1 smooth stick release and to avoid twitch
}
@ -294,19 +303,17 @@ static void hybrid_run()
// transition from Loiter to Manual
if (hybrid.loiter_engaged) {
hybrid.loiter_engaged = false;
loiter_man_timer=LOITER_MAN_MIX_TIMER;
loiter_man_timer = HYBRID_LOITER_MAN_MIX_TIMER;
// save pitch/roll at loiter exit
loiter_roll = wp_nav.get_roll();
loiter_pitch = wp_nav.get_pitch();
}
if (update_wind_offset_timer==0) { // reduce update frequency of wind_offset to 10Hz
// compute wind_offset_roll/pitch frame referred lon/lat_i_term and yaw rotated
// acceleration to angle
wind_offset_pitch = (float)fast_atan(-(wind_comp_x*ahrs.cos_yaw() + wind_comp_y*ahrs.sin_yaw())/981)*(18000/M_PI);
wind_offset_roll = (float)fast_atan((-wind_comp_x*ahrs.sin_yaw() + wind_comp_y*ahrs.cos_yaw())/981)*(18000/M_PI);
update_wind_offset_timer=10;
if (wind_offset_timer == 0) { // reduce update frequency of wind_offset to 10Hz
// retrieve latest wind compensation lean angles
hybrid_get_wind_comp_lean_angles(wind_offset_roll, wind_offset_pitch);
wind_offset_timer = 10;
} else {
update_wind_offset_timer--;
wind_offset_timer--;
}
}
@ -321,17 +328,28 @@ static void hybrid_run()
// Loiter-Manual mix at loiter exit
target_roll = loiter_man_mix*(float)loiter_roll+(1.0f-loiter_man_mix)*(float)(brake_roll+wind_offset_roll);
break;
case HYBRID_BRAKE:
target_roll = brake_roll + wind_offset_roll;
break;
case HYBRID_BRAKE_TO_LOITER:
break;
case HYBRID_LOITER:
if (hybrid.loiter_engaged) { // if nav_hybrid enabled...
if (hybrid.loiter_engaged) {
// Brake_Loiter mix at loiter engage
target_roll = brake_loiter_mix*(float)wp_nav.get_roll()+(1.0f-brake_loiter_mix)*(float)(brake_roll+wind_offset_roll);
}else {
target_roll = brake_roll + wind_offset_roll;
}
break;
case HYBRID_LOITER_TO_PILOT_OVERRIDE:
// Loiter-Manual mix at loiter exit
target_roll = loiter_man_mix*(float)loiter_roll+(1.0f-loiter_man_mix)*(float)(brake_roll+wind_offset_roll);
// To-Do: add handling of exiting this mode far far above
break;
}
switch (hybrid.pitch_mode){
@ -339,17 +357,29 @@ static void hybrid_run()
//Loiter-Manual mix at loiter exit
target_pitch = loiter_man_mix*(float)loiter_pitch+(1.0f-loiter_man_mix)*(float)(brake_pitch+wind_offset_pitch);
break;
case HYBRID_BRAKE:
target_pitch = brake_pitch+wind_offset_pitch;
break;
case HYBRID_BRAKE_TO_LOITER:
break;
case HYBRID_LOITER:
if(hybrid.loiter_engaged) { // if nav_hybrid enabled...
// Brake_Loiter mix at loiter engage
if(hybrid.loiter_engaged) {
// mix brake and loiter outputs
target_pitch = brake_loiter_mix*(float)wp_nav.get_pitch()+(1.0f-brake_loiter_mix)*(float)(brake_pitch+wind_offset_pitch);
} else {
// only wind-compensate pitch (roll is likely under manual control)
target_pitch = brake_pitch+wind_offset_pitch;
}
break;
case HYBRID_LOITER_TO_PILOT_OVERRIDE:
// mix brake and loiter outputs
target_pitch = brake_loiter_mix*(float)wp_nav.get_pitch()+(1.0f-brake_loiter_mix)*(float)(brake_pitch+wind_offset_pitch);
// To-Do: add handling of exiting this mode far far above
break;
}
// constrain target pitch/roll angles
@ -368,5 +398,38 @@ static void hybrid_run()
pos_control.set_alt_target_from_climb_rate(target_climb_rate, G_Dt);
pos_control.update_z_controller();
}
*/
}
// hybrid_update_wind_comp_estimate - updates wind compensation estimate
// should be called at the maximum loop rate when loiter is engaged
// To-Do: adjust the filtering for 100hz and 400hz update rates
static void hybrid_update_wind_comp_estimate()
{
if (inertial_nav.get_velocity_xy() > HYBRID_WIND_COMP_ESTIMATE_SPEED_MAX) {
return;
}
// update wind compensation in earth-frame lean angles
if (wind_comp_ef.x == 0) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef.x = pos_control.get_desired_acc_x();
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef.x = (0.97f*wind_comp_ef.x+0.03f*pos_control.get_desired_acc_x());
}
if (wind_comp_ef.y == 0) {
// if wind compensation has not been initialised set it immediately to the pos controller's desired accel in north direction
wind_comp_ef.y = pos_control.get_desired_acc_y();
} else {
// low pass filter the position controller's lean angle output
wind_comp_ef.y = (0.97f*wind_comp_ef.y+0.03f*pos_control.get_desired_acc_y());
}
}
// hybrid_get_wind_comp_lean_angles - retrieve wind compensation angles in body frame roll and pitch angles
static void hybrid_get_wind_comp_lean_angles(int16_t &roll_angle, int16_t &pitch_angle)
{
// convert earth frame desired accelerations to body frame roll and pitch lean angles
roll_angle = (float)fast_atan((-wind_comp_ef.x*ahrs.sin_yaw() + wind_comp_ef.y*ahrs.cos_yaw())/981)*(18000/M_PI);
pitch_angle = (float)fast_atan(-(wind_comp_ef.x*ahrs.cos_yaw() + wind_comp_ef.y*ahrs.sin_yaw())/981)*(18000/M_PI);
}