AP_HAL_AVR: implement ::init method in derived HAL_AVR class.

* Implementation of ::init taken from Arduino core. Not tested yet
This commit is contained in:
Pat Hickey 2012-08-22 17:40:19 -07:00 committed by Andrew Tridgell
parent 18329b1a5d
commit 59a94d5aac
6 changed files with 238 additions and 9 deletions

View File

@ -3,6 +3,7 @@
#include "AP_HAL_AVR.h"
/* Include AVR-specific implementations of the HAL classes */
#include "HAL_AVR.h"
#include "UARTDriver.h"
#include "I2CDriver.h"
#include "SPIDriver.h"
@ -39,7 +40,7 @@ static APM2PPMInput apm2PPMInput;
static APM1PWMOutput apm1PWMOutput;
static APM2PWMOutput apm2PWMOutput;
const HAL AP_HAL_AVR_APM1(
const HAL_AVR AP_HAL_AVR_APM1(
(UARTDriver*) &avrUart0Driver,
(UARTDriver*) &avrUart1Driver,
(UARTDriver*) &avrUart2Driver,
@ -54,7 +55,7 @@ const HAL AP_HAL_AVR_APM1(
&apm1PPMInput,
&apm1PWMOutput );
const HAL AP_HAL_AVR_APM2(
const HAL_AVR AP_HAL_AVR_APM2(
(UARTDriver*) &avrUart0Driver,
(UARTDriver*) &avrUart1Driver,
(UARTDriver*) &avrUart2Driver,

View File

@ -3,6 +3,7 @@
#define __AP_HAL_AVR_H__
#include <AP_HAL.h>
#include "HAL_AVR.h"
/**
* This module exports AP_HAL instances only.
@ -10,8 +11,8 @@
* and not expose implementation details.
*/
extern const AP_HAL::HAL AP_HAL_AVR_APM1;
extern const AP_HAL::HAL AP_HAL_AVR_APM2;
extern const AP_HAL_AVR::HAL_AVR AP_HAL_AVR_APM1;
extern const AP_HAL_AVR::HAL_AVR AP_HAL_AVR_APM2;
#endif // __AP_HAL_AVR_H__

View File

@ -3,6 +3,8 @@
#define __AP_HAL_AVR_NAMESPACE_H__
namespace AP_HAL_AVR {
class HAL_AVR;
class AVRUARTDriver;
class AVRI2CDriver;
class ArduinoSPIDriver;

View File

@ -0,0 +1,182 @@
#include "HAL_AVR.h"
using namespace AP_HAL_AVR;
#include <avr/io.h>
#include <avr/interrupt.h>
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
volatile unsigned long timer0_overflow_count = 0;
volatile unsigned long timer0_millis = 0;
static unsigned char timer0_fract = 0;
/**
* HAL_AVR::init is based on the Arduino wiring.c init, but specialized for
* the atmega2560
*/
void HAL_AVR::init(void* opts) const {
// this needs to be called before setup() or some functions won't
// work there
sei();
// set timer 0 prescale factor to 64
// this combination is for the standard 168/328/1280/2560
sbi(TCCR0B, CS01);
sbi(TCCR0B, CS00);
// enable timer 0 overflow interrupt
sbi(TIMSK0, TOIE0);
// timers 1 and 2 are used for phase-correct hardware pwm
// this is better for motors as it ensures an even waveform
// note, however, that fast pwm mode can achieve a frequency of up
// 8 MHz (with a 16 MHz clock) at 50% duty cycle
TCCR1B = 0;
// set timer 1 prescale factor to 64
sbi(TCCR1B, CS11);
sbi(TCCR1B, CS10);
// put timer 1 in 8-bit phase correct pwm mode
sbi(TCCR1A, WGM10);
// set timer 2 prescale factor to 64
sbi(TCCR2B, CS22);
sbi(TCCR3B, CS31); // set timer 3 prescale factor to 64
sbi(TCCR3B, CS30);
sbi(TCCR3A, WGM30); // put timer 3 in 8-bit phase correct pwm mode
sbi(TCCR4B, CS41); // set timer 4 prescale factor to 64
sbi(TCCR4B, CS40);
sbi(TCCR4A, WGM40); // put timer 4 in 8-bit phase correct pwm mode
sbi(TCCR5B, CS51); // set timer 5 prescale factor to 64
sbi(TCCR5B, CS50);
sbi(TCCR5A, WGM50); // put timer 5 in 8-bit phase correct pwm mode
// set a2d prescale factor to 128
// 16 MHz / 128 = 125 KHz, inside the desired 50-200 KHz range.
// XXX: this will not work properly for other clock speeds, and
// this code should use F_CPU to determine the prescale factor.
sbi(ADCSRA, ADPS2);
sbi(ADCSRA, ADPS1);
sbi(ADCSRA, ADPS0);
// enable a2d conversions
sbi(ADCSRA, ADEN);
// the bootloader connects pins 0 and 1 to the USART; disconnect them
// here so they can be used as normal digital i/o; they will be
// reconnected in Serial.begin()
UCSR0B = 0;
};
#define clockCyclesPerMicrosecond() ( F_CPU / 1000000L )
#define clockCyclesToMicroseconds(a) ( ((a) * 1000L) / (F_CPU / 1000L) )
// the prescaler is set so that timer0 ticks every 64 clock cycles, and the
// the overflow handler is called every 256 ticks.
#define MICROSECONDS_PER_TIMER0_OVERFLOW (clockCyclesToMicroseconds(64 * 256))
// the whole number of milliseconds per timer0 overflow
#define MILLIS_INC (MICROSECONDS_PER_TIMER0_OVERFLOW / 1000)
// the fractional number of milliseconds per timer0 overflow. we shift right
// by three to fit these numbers into a byte. (for the clock speeds we care
// about - 8 and 16 MHz - this doesn't lose precision.)
#define FRACT_INC ((MICROSECONDS_PER_TIMER0_OVERFLOW % 1000) >> 3)
#define FRACT_MAX (1000 >> 3)
SIGNAL(TIMER0_OVF_vect)
{
// copy these to local variables so they can be stored in registers
// (volatile variables must be read from memory on every access)
unsigned long m = timer0_millis;
unsigned char f = timer0_fract;
m += MILLIS_INC;
f += FRACT_INC;
if (f >= FRACT_MAX) {
f -= FRACT_MAX;
m += 1;
}
timer0_fract = f;
timer0_millis = m;
timer0_overflow_count++;
}
unsigned long millis()
{
unsigned long m;
uint8_t oldSREG = SREG;
// disable interrupts while we read timer0_millis or we might get an
// inconsistent value (e.g. in the middle of a write to timer0_millis)
cli();
m = timer0_millis;
SREG = oldSREG;
return m;
}
unsigned long micros() {
unsigned long m;
uint8_t oldSREG = SREG, t;
cli();
m = timer0_overflow_count;
t = TCNT0;
if ((TIFR0 & _BV(TOV0)) && (t < 255))
m++;
SREG = oldSREG;
return ((m << 8) + t) * (64 / clockCyclesPerMicrosecond());
}
void delay(unsigned long ms)
{
uint16_t start = (uint16_t)micros();
while (ms > 0) {
if (((uint16_t)micros() - start) >= 1000) {
ms--;
start += 1000;
}
}
}
/* Delay for the given number of microseconds. Assumes a 8 or 16 MHz clock. */
void delayMicroseconds(unsigned int us)
{
// calling avrlib's delay_us() function with low values (e.g. 1 or
// 2 microseconds) gives delays longer than desired.
//delay_us(us);
// for the 16 MHz clock on most Arduino boards
// for a one-microsecond delay, simply return. the overhead
// of the function call yields a delay of approximately 1 1/8 us.
if (--us == 0)
return;
// the following loop takes a quarter of a microsecond (4 cycles)
// per iteration, so execute it four times for each microsecond of
// delay requested.
us <<= 2;
// account for the time taken in the preceeding commands.
us -= 2;
// busy wait
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (us) : "0" (us) // 2 cycles
);
}

View File

@ -0,0 +1,35 @@
#ifndef __AP_HAL_AVR_HAL_AVR_H__
#define __AP_HAL_AVR_HAL_AVR_H__
#include <AP_HAL.h>
#include "AP_HAL_AVR_Namespace.h"
/* HAL_AVR class derives from HAL but provides an AVR-specific
* init method.
*/
class AP_HAL_AVR::HAL_AVR : public AP_HAL::HAL {
public:
HAL_AVR(
AP_HAL::UARTDriver* _uart0,
AP_HAL::UARTDriver* _uart1,
AP_HAL::UARTDriver* _uart2,
AP_HAL::UARTDriver* _uart3,
AP_HAL::I2CDriver* _i2c,
AP_HAL::SPIDriver* _spi,
AP_HAL::AnalogIn* _analogIn,
AP_HAL::Storage* _storage,
AP_HAL::Log* _log,
AP_HAL::Console* _console,
AP_HAL::GPIO* _gpio,
AP_HAL::PPMInput* _ppmin,
AP_HAL::PWMOutput* _pwmout)
: AP_HAL::HAL( _uart0, _uart1, _uart2, _uart3,
_i2c, _spi, _analogIn, _storage,
_log, _console, _gpio, _ppmin, _pwmout) {}
void init(void* opts) const;
};
#endif // __AP_HAL_AVR_HAL_AVR_H__

View File

@ -3,7 +3,7 @@
#include <AP_HAL.h>
#include <AP_HAL_AVR.h>
const AP_HAL::HAL& hal1 = AP_HAL_AVR_APM1;
const AP_HAL::HAL& hal = AP_HAL_AVR_APM1;
const AP_HAL::HAL& hal2 = AP_HAL_AVR_APM2;
void loop (void) {
@ -11,14 +11,22 @@ void loop (void) {
}
void setup (void) {
hal1.uart0->begin(9600);
hal.uart0->begin(9600);
hal2.uart0->begin(9600);
hal1.uart1->begin(9600);
hal.uart1->begin(9600);
hal2.uart1->begin(9600);
hal1.uart2->begin(9600);
hal.uart2->begin(9600);
hal2.uart2->begin(9600);
hal1.uart3->begin(9600);
hal.uart3->begin(9600);
hal2.uart3->begin(9600);
}
extern "C" {
int main (void) {
hal.init(NULL);
setup();
for(;;) loop();
return 0;
}
}