Replay: split off a ReplayVehicle class

Like "Copter copter" and "Plane plane": "ReplayVehicle replayvehicle"
This commit is contained in:
Peter Barker 2015-06-20 22:30:00 +10:00 committed by Andrew Tridgell
parent a22f9bc695
commit 54efa3d727

View File

@ -71,17 +71,10 @@
const AP_HAL::HAL& hal = AP_HAL_BOARD_DRIVER;
class Replay {
class ReplayVehicle {
public:
void setup();
void loop();
Replay() : filename("log.bin") { }
private:
const char *filename;
Parameters g;
void load_parameters(void);
AP_InertialSensor ins;
AP_Baro barometer;
@ -95,62 +88,22 @@ private:
AP_Airspeed airspeed{aparm};
DataFlash_File dataflash{"logs"};
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL sitl;
#endif
LogReader logreader{ahrs, ins, barometer, compass, gps, airspeed, dataflash};
FILE *plotf;
FILE *plotf2;
FILE *ekf1f;
FILE *ekf2f;
FILE *ekf3f;
FILE *ekf4f;
bool done_parameters;
bool done_baro_init;
bool done_home_init;
uint16_t update_rate = 0;
int32_t arm_time_ms = -1;
bool ahrs_healthy;
bool have_imu2 = false;
bool have_imt = false;
bool have_imt2 = false;
bool have_fram = false;
bool use_imt = true;
void _parse_command_line(uint8_t argc, char * const argv[]);
uint8_t num_user_parameters;
struct {
char name[17];
float value;
} user_parameters[100];
private:
Parameters g;
// setup the var_info table
AP_Param param_loader{var_info};
static const AP_Param::Info var_info[];
void load_parameters(void);
void usage(void);
void set_user_parameters(void);
void read_sensors(const char *type);
};
static const struct LogStructure log_structure[] PROGMEM = {
LOG_COMMON_STRUCTURES
};
ReplayVehicle replayvehicle;
static Replay replay;
#define GSCALAR(v, name, def) { replayvehicle.g.v.vtype, name, Parameters::k_param_ ## v, &replayvehicle.g.v, {def_value : def} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replayvehicle.v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replayvehicle.v, {group_info : class::var_info} }
#define GSCALAR(v, name, def) { replay.g.v.vtype, name, Parameters::k_param_ ## v, &replay.g.v, {def_value : def} }
#define GOBJECT(v, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## v, &replay.v, {group_info : class::var_info} }
#define GOBJECTN(v, pname, name, class) { AP_PARAM_GROUP, name, Parameters::k_param_ ## pname, &replay.v, {group_info : class::var_info} }
const AP_Param::Info Replay::var_info[] PROGMEM = {
const AP_Param::Info ReplayVehicle::var_info[] PROGMEM = {
GSCALAR(dummy, "_DUMMY", 0),
// barometer ground calibration. The GND_ prefix is chosen for
@ -182,13 +135,93 @@ const AP_Param::Info Replay::var_info[] PROGMEM = {
AP_VAREND
};
void Replay::load_parameters(void)
void ReplayVehicle::load_parameters(void)
{
if (!AP_Param::check_var_info()) {
hal.scheduler->panic(PSTR("Bad parameter table"));
}
}
static const struct LogStructure log_structure[] PROGMEM = {
LOG_COMMON_STRUCTURES
};
void ReplayVehicle::setup(void) {
dataflash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
dataflash.StartNewLog();
ahrs.set_compass(&compass);
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_correct_centrifugal(true);
ahrs.set_ekf_use(true);
printf("Starting disarmed\n");
hal.util->set_soft_armed(false);
barometer.init();
barometer.setHIL(0);
barometer.update();
compass.init();
ins.set_hil_mode();
}
class Replay {
public:
void setup();
void loop();
Replay(ReplayVehicle &vehicle) :
filename("log.bin"),
_vehicle(vehicle) { }
private:
const char *filename;
ReplayVehicle &_vehicle;
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
SITL sitl;
#endif
LogReader logreader{_vehicle.ahrs, _vehicle.ins, _vehicle.barometer, _vehicle.compass, _vehicle.gps, _vehicle.airspeed, _vehicle.dataflash};
FILE *plotf;
FILE *plotf2;
FILE *ekf1f;
FILE *ekf2f;
FILE *ekf3f;
FILE *ekf4f;
bool done_parameters;
bool done_baro_init;
bool done_home_init;
uint16_t update_rate = 0;
int32_t arm_time_ms = -1;
bool ahrs_healthy;
bool have_imu2 = false;
bool have_imt = false;
bool have_imt2 = false;
bool have_fram = false;
bool use_imt = true;
void _parse_command_line(uint8_t argc, char * const argv[]);
uint8_t num_user_parameters;
struct {
char name[17];
float value;
} user_parameters[100];
void set_ins_update_rate(uint16_t update_rate);
void usage(void);
void set_user_parameters(void);
void read_sensors(const char *type);
};
Replay replay(replayvehicle);
void Replay::usage(void)
{
::printf("Options:\n");
@ -372,15 +405,13 @@ void Replay::setup()
hal.console->printf("Using an update rate of %u Hz\n", update_rate);
load_parameters();
if (!logreader.open_log(filename)) {
perror(filename);
exit(1);
}
dataflash.Init(log_structure, sizeof(log_structure)/sizeof(log_structure[0]));
dataflash.StartNewLog();
_vehicle.setup();
set_ins_update_rate(update_rate);
logreader.wait_type("GPS");
logreader.wait_type("IMU");
@ -389,37 +420,6 @@ void Replay::setup()
feenableexcept(FE_INVALID | FE_OVERFLOW);
ahrs.set_compass(&compass);
ahrs.set_fly_forward(true);
ahrs.set_wind_estimation(true);
ahrs.set_correct_centrifugal(true);
printf("Starting disarmed\n");
hal.util->set_soft_armed(false);
barometer.init();
barometer.setHIL(0);
barometer.update();
compass.init();
ins.set_hil_mode();
switch (update_rate) {
case 50:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ);
break;
case 100:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ);
break;
case 200:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ);
break;
case 400:
ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ);
break;
default:
printf("Invalid update rate (%d); use 50, 100, 200 or 400\n",update_rate);
exit(1);
}
plotf = fopen("plot.dat", "w");
plotf2 = fopen("plot2.dat", "w");
@ -435,8 +435,6 @@ void Replay::setup()
fprintf(ekf3f, "timestamp TimeMS IVN IVE IVD IPN IPE IPD IMX IMY IMZ IVT\n");
fprintf(ekf4f, "timestamp TimeMS SV SP SH SMX SMY SMZ SVT OFN EFE FS DS\n");
ahrs.set_ekf_use(true);
::printf("Waiting for GPS\n");
while (!done_home_init) {
char type[5];
@ -445,21 +443,41 @@ void Replay::setup()
}
read_sensors(type);
if (streq(type, "GPS") &&
gps.status() >= AP_GPS::GPS_OK_FIX_3D &&
(_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) &&
done_baro_init && !done_home_init) {
const Location &loc = gps.location();
const Location &loc = _vehicle.gps.location();
::printf("GPS Lock at %.7f %.7f %.2fm time=%.1f seconds\n",
loc.lat * 1.0e-7f,
loc.lng * 1.0e-7f,
loc.alt * 0.01f,
hal.scheduler->millis()*0.001f);
ahrs.set_home(loc);
compass.set_initial_location(loc.lat, loc.lng);
_vehicle.ahrs.set_home(loc);
_vehicle.compass.set_initial_location(loc.lat, loc.lng);
done_home_init = true;
}
}
}
void Replay::set_ins_update_rate(uint16_t update_rate) {
switch (update_rate) {
case 50:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_50HZ);
break;
case 100:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_100HZ);
break;
case 200:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_200HZ);
break;
case 400:
_vehicle.ins.init(AP_InertialSensor::WARM_START, AP_InertialSensor::RATE_400HZ);
break;
default:
printf("Invalid update rate (%d); use 50, 100, 200 or 400\n",update_rate);
exit(1);
}
}
/*
setup user -p parameters
@ -491,20 +509,20 @@ void Replay::read_sensors(const char *type)
}
if (streq(type,"GPS")) {
gps.update();
if (gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
ahrs.estimate_wind();
_vehicle.gps.update();
if (_vehicle.gps.status() >= AP_GPS::GPS_OK_FIX_3D) {
_vehicle.ahrs.estimate_wind();
}
} else if (streq(type,"MAG")) {
compass.read();
_vehicle.compass.read();
} else if (streq(type,"ARSP")) {
ahrs.set_airspeed(&airspeed);
_vehicle.ahrs.set_airspeed(&_vehicle.airspeed);
} else if (streq(type,"BARO")) {
barometer.update();
_vehicle.barometer.update();
if (!done_baro_init) {
done_baro_init = true;
::printf("Barometer initialised\n");
barometer.update_calibration();
_vehicle.barometer.update_calibration();
}
}
@ -531,15 +549,15 @@ void Replay::read_sensors(const char *type)
run_ahrs = true;
}
if (run_ahrs) {
ahrs.update();
if (ahrs.get_home().lat != 0) {
inertial_nav.update(ins.get_delta_time());
_vehicle.ahrs.update();
if (_vehicle.ahrs.get_home().lat != 0) {
_vehicle.inertial_nav.update(_vehicle.ins.get_delta_time());
}
dataflash.Log_Write_EKF(ahrs,false);
dataflash.Log_Write_AHRS2(ahrs);
dataflash.Log_Write_POS(ahrs);
if (ahrs.healthy() != ahrs_healthy) {
ahrs_healthy = ahrs.healthy();
_vehicle.dataflash.Log_Write_EKF(_vehicle.ahrs,false);
_vehicle.dataflash.Log_Write_AHRS2(_vehicle.ahrs);
_vehicle.dataflash.Log_Write_POS(_vehicle.ahrs);
if (_vehicle.ahrs.healthy() != ahrs_healthy) {
ahrs_healthy = _vehicle.ahrs.healthy();
printf("AHRS health: %u at %lu\n",
(unsigned)ahrs_healthy,
(unsigned long)hal.scheduler->millis());
@ -591,22 +609,22 @@ void Replay::loop()
Vector2f offset;
uint8_t faultStatus;
const Matrix3f &dcm_matrix = ahrs.AP_AHRS_DCM::get_dcm_matrix();
const Matrix3f &dcm_matrix = _vehicle.ahrs.AP_AHRS_DCM::get_dcm_matrix();
dcm_matrix.to_euler(&DCM_attitude.x, &DCM_attitude.y, &DCM_attitude.z);
EKF.getEulerAngles(ekf_euler);
EKF.getVelNED(velNED);
EKF.getPosNED(posNED);
EKF.getGyroBias(gyroBias);
EKF.getIMU1Weighting(accelWeighting);
EKF.getAccelZBias(accelZBias1, accelZBias2);
EKF.getWind(windVel);
EKF.getMagNED(magNED);
EKF.getMagXYZ(magXYZ);
EKF.getInnovations(velInnov, posInnov, magInnov, tasInnov);
EKF.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
EKF.getFilterFaults(faultStatus);
EKF.getPosNED(ekf_relpos);
Vector3f inav_pos = inertial_nav.get_position() * 0.01f;
_vehicle.EKF.getEulerAngles(ekf_euler);
_vehicle.EKF.getVelNED(velNED);
_vehicle.EKF.getPosNED(posNED);
_vehicle.EKF.getGyroBias(gyroBias);
_vehicle.EKF.getIMU1Weighting(accelWeighting);
_vehicle.EKF.getAccelZBias(accelZBias1, accelZBias2);
_vehicle.EKF.getWind(windVel);
_vehicle.EKF.getMagNED(magNED);
_vehicle.EKF.getMagXYZ(magXYZ);
_vehicle.EKF.getInnovations(velInnov, posInnov, magInnov, tasInnov);
_vehicle.EKF.getVariances(velVar, posVar, hgtVar, magVar, tasVar, offset);
_vehicle.EKF.getFilterFaults(faultStatus);
_vehicle.EKF.getPosNED(ekf_relpos);
Vector3f inav_pos = _vehicle.inertial_nav.get_position() * 0.01f;
float temp = degrees(ekf_euler.z);
if (temp < 0.0f) temp = temp + 360.0f;
@ -615,7 +633,7 @@ void Replay::loop()
logreader.get_sim_attitude().x,
logreader.get_sim_attitude().y,
logreader.get_sim_attitude().z,
barometer.get_altitude(),
_vehicle.barometer.get_altitude(),
logreader.get_attitude().x,
logreader.get_attitude().y,
wrap_180_cd(logreader.get_attitude().z*100)*0.01f,