AP_Mount: added an alternative tilt-only gimbal control method
this adds some nice control characteristics based on work by Paul and Arthur, but is tilt only
This commit is contained in:
parent
9b2d44d6ed
commit
50a11c7d5a
@ -5,6 +5,7 @@
|
||||
#include <GCS_MAVLink.h>
|
||||
|
||||
#define MOUNT_DEBUG 0
|
||||
#define TILT_CONTROL_ONLY 0
|
||||
|
||||
#if MOUNT_DEBUG
|
||||
#include <stdio.h>
|
||||
@ -13,7 +14,12 @@
|
||||
AP_Mount_MAVLink::AP_Mount_MAVLink(AP_Mount &frontend, AP_Mount::mount_state &state, uint8_t instance) :
|
||||
AP_Mount_Backend(frontend, state, instance),
|
||||
_initialised(false),
|
||||
_ekf(frontend._ahrs)
|
||||
_ekf(frontend._ahrs),
|
||||
K_gimbalRate(0.1f),
|
||||
angRateLimit(0.5f),
|
||||
yawRateFiltPole(10.0f),
|
||||
yawErrorLimit(0.1f),
|
||||
vehicleYawRateFilt(0)
|
||||
{}
|
||||
|
||||
// init - performs any required initialisation for this instance
|
||||
@ -108,45 +114,25 @@ void AP_Mount_MAVLink::handle_gimbal_report(mavlink_channel_t chan, mavlink_mess
|
||||
Vector3f joint_angles(_gimbal_report.joint_roll,
|
||||
_gimbal_report.joint_pitch,
|
||||
_gimbal_report.joint_yaw);
|
||||
|
||||
_ekf.RunEKF(_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
||||
|
||||
// get the gyro bias data
|
||||
Vector3f gyroBias;
|
||||
_ekf.getGyroBias(gyroBias);
|
||||
/*
|
||||
we have two different gimbal control algorithms. One does tilt
|
||||
control only, but has better control characteristics. The other
|
||||
does roll/tilt/yaw, but has worset control characteristics
|
||||
*/
|
||||
#if TILT_CONTROL_ONLY
|
||||
Vector3f rateDemand = gimbal_update_control2(_angle_ef_target_rad,
|
||||
_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
||||
#else
|
||||
Vector3f rateDemand = gimbal_update_control1(_angle_ef_target_rad,
|
||||
_gimbal_report.delta_time, delta_angles, delta_velocity, joint_angles);
|
||||
#endif
|
||||
|
||||
// get the gimbal estimated quaternion
|
||||
Quaternion quatEst;
|
||||
_ekf.getQuat(quatEst);
|
||||
|
||||
// set the demanded quaternion - tilt down with a roll and yaw of zero
|
||||
Quaternion quatDem;
|
||||
quatDem.from_euler(_angle_ef_target_rad.x,
|
||||
_angle_ef_target_rad.y,
|
||||
_angle_ef_target_rad.z);
|
||||
|
||||
//divide the demanded quaternion by the estimated to get the error
|
||||
Quaternion quatErr = quatDem / quatEst;
|
||||
|
||||
// convert the quaternion to an angle error vector
|
||||
Vector3f deltaAngErr;
|
||||
float scaler = 1.0f-quatErr[0]*quatErr[0];
|
||||
if (scaler > 1e-12) {
|
||||
scaler = 1.0f/sqrtf(scaler);
|
||||
deltaAngErr.x = quatErr[1] * scaler;
|
||||
deltaAngErr.y = quatErr[2] * scaler;
|
||||
deltaAngErr.z = quatErr[3] * scaler;
|
||||
} else {
|
||||
deltaAngErr.zero();
|
||||
}
|
||||
|
||||
// multiply the angle error vector by a gain to calculate a demanded gimbal rate
|
||||
Vector3f rateDemand = deltaAngErr * 1.0f;
|
||||
|
||||
// Constrain the demanded rate to a length of 0.5 rad /sec
|
||||
float length = rateDemand.length();
|
||||
if (length > 0.5f) {
|
||||
rateDemand = rateDemand * (0.5f / length);
|
||||
}
|
||||
// for now send a zero gyro bias update and incorporate into the
|
||||
// demanded rates
|
||||
Vector3f gyroBias(0,0,0);
|
||||
|
||||
// send the gimbal control message
|
||||
mavlink_msg_gimbal_control_send(chan,
|
||||
@ -184,4 +170,184 @@ void AP_Mount_MAVLink::send_gimbal_report(mavlink_channel_t chan)
|
||||
#endif
|
||||
}
|
||||
|
||||
/*
|
||||
calculate demanded rates for the gimbal
|
||||
*/
|
||||
Vector3f AP_Mount_MAVLink::gimbal_update_control1(const Vector3f &ef_target_euler_rad,
|
||||
float delta_time,
|
||||
const Vector3f &delta_angles,
|
||||
const Vector3f &delta_velocity,
|
||||
const Vector3f &joint_angles)
|
||||
{
|
||||
// get the gyro bias data
|
||||
Vector3f gyroBias;
|
||||
_ekf.getGyroBias(gyroBias);
|
||||
|
||||
// get the gimbal estimated quaternion
|
||||
Quaternion quatEst;
|
||||
_ekf.getQuat(quatEst);
|
||||
|
||||
// set the demanded quaternion - tilt down with a roll and yaw of zero
|
||||
Quaternion quatDem;
|
||||
quatDem.from_euler(ef_target_euler_rad.x, ef_target_euler_rad.y, ef_target_euler_rad.z);
|
||||
|
||||
//divide the demanded quaternion by the estimated to get the error
|
||||
Quaternion quatErr = quatDem / quatEst;
|
||||
|
||||
// convert the quaternion to an angle error vector
|
||||
Vector3f deltaAngErr;
|
||||
float scaler = 1.0f-quatErr[0]*quatErr[0];
|
||||
if (scaler > 1e-12) {
|
||||
scaler = 1.0f/sqrtf(scaler);
|
||||
deltaAngErr.x = quatErr[1] * scaler;
|
||||
deltaAngErr.y = quatErr[2] * scaler;
|
||||
deltaAngErr.z = quatErr[3] * scaler;
|
||||
} else {
|
||||
deltaAngErr.zero();
|
||||
}
|
||||
|
||||
// multiply the angle error vector by a gain to calculate a demanded gimbal rate
|
||||
Vector3f rateDemand = deltaAngErr * 1.0f;
|
||||
|
||||
// Constrain the demanded rate to a length of 0.5 rad /sec
|
||||
float length = rateDemand.length();
|
||||
if (length > 0.5f) {
|
||||
rateDemand = rateDemand * (0.5f / length);
|
||||
}
|
||||
|
||||
return rateDemand;
|
||||
}
|
||||
|
||||
|
||||
// convert the quaternion to rotation vector
|
||||
Vector3f AP_Mount_MAVLink::quaternion_to_vector(const Quaternion &quat)
|
||||
{
|
||||
Vector3f vector;
|
||||
float scaler = 1.0f-quat[0]*quat[0];
|
||||
if (scaler > 1e-12f) {
|
||||
scaler = 1.0f/sqrtf(scaler);
|
||||
if (quat[0] < 0.0f) {
|
||||
scaler *= -1.0f;
|
||||
}
|
||||
vector.x = quat[1] * scaler;
|
||||
vector.y = quat[2] * scaler;
|
||||
vector.z = quat[3] * scaler;
|
||||
} else {
|
||||
vector.zero();
|
||||
}
|
||||
return vector;
|
||||
}
|
||||
|
||||
// Define rotation matrix using a 312 rotation sequence vector
|
||||
Matrix3f AP_Mount_MAVLink::vector312_to_rotation_matrix(const Vector3f &vector)
|
||||
{
|
||||
Matrix3f matrix;
|
||||
float cosPhi = cosf(vector.x);
|
||||
float cosTheta = cosf(vector.y);
|
||||
float sinPhi = sinf(vector.x);
|
||||
float sinTheta = sinf(vector.y);
|
||||
float sinPsi = sinf(vector.z);
|
||||
float cosPsi = cosf(vector.z);
|
||||
matrix[0][0] = cosTheta*cosPsi-sinPsi*sinPhi*sinTheta;
|
||||
matrix[1][0] = -sinPsi*cosPhi;
|
||||
matrix[2][0] = cosPsi*sinTheta+cosTheta*sinPsi*sinPhi;
|
||||
matrix[0][1] = cosTheta*sinPsi+cosPsi*sinPhi*sinTheta;
|
||||
matrix[1][1] = cosPsi*cosPhi;
|
||||
matrix[2][1] = sinPsi*sinTheta-cosTheta*cosPsi*sinPhi;
|
||||
matrix[0][2] = -sinTheta*cosPhi;
|
||||
matrix[1][2] = sinPhi;
|
||||
matrix[2][2] = cosTheta*cosPhi;
|
||||
return matrix;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
calculate the demanded rates for the mount, running the controller
|
||||
*/
|
||||
Vector3f AP_Mount_MAVLink::gimbal_update_control2(const Vector3f &ef_target_euler_rad,
|
||||
float delta_time,
|
||||
const Vector3f &delta_angles,
|
||||
const Vector3f &delta_velocity,
|
||||
const Vector3f &joint_angles)
|
||||
{
|
||||
// get the gimbal quaternion estimate
|
||||
Quaternion quatEst;
|
||||
_ekf.getQuat(quatEst);
|
||||
|
||||
// Add the control rate vectors
|
||||
Vector3f gimbalRateDemVec =
|
||||
getGimbalRateDemVecYaw(ef_target_euler_rad, delta_time, quatEst, joint_angles) +
|
||||
getGimbalRateDemVecTilt(ef_target_euler_rad, quatEst) +
|
||||
getGimbalRateDemVecForward(ef_target_euler_rad, delta_time, quatEst);
|
||||
|
||||
Vector3f gyroBias;
|
||||
_ekf.getGyroBias(gyroBias);
|
||||
|
||||
gimbalRateDemVec += gyroBias;
|
||||
return gimbalRateDemVec;
|
||||
}
|
||||
|
||||
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecYaw(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst, const Vector3f &joint_angles)
|
||||
{
|
||||
// Define rotation from vehicle to gimbal using a 312 rotation sequence
|
||||
Matrix3f Tvg = vector312_to_rotation_matrix(joint_angles);
|
||||
|
||||
// multiply the yaw joint angle by a gain to calculate a
|
||||
// demanded vehicle frame relative rate vector required to
|
||||
// keep the yaw joint centred
|
||||
Vector3f gimbalRateDemVecYaw(0, 0, - K_gimbalRate * joint_angles.z);
|
||||
|
||||
// Get filtered vehicle turn rate in earth frame
|
||||
vehicleYawRateFilt = (1.0f - yawRateFiltPole * delta_time) * vehicleYawRateFilt + yawRateFiltPole * delta_time * _frontend._ahrs.get_yaw_rate_earth();
|
||||
Vector3f vehicle_rate_ef(0,0,vehicleYawRateFilt);
|
||||
|
||||
// calculate the maximum steady state rate error corresponding to the maximum permitted yaw angle error
|
||||
float maxRate = K_gimbalRate * yawErrorLimit;
|
||||
float vehicle_rate_mag_ef = vehicle_rate_ef.length();
|
||||
float excess_rate_correction = fabs(vehicle_rate_mag_ef) - maxRate;
|
||||
if (vehicle_rate_mag_ef > maxRate) {
|
||||
if (vehicle_rate_ef.z>0.0f) {
|
||||
gimbalRateDemVecYaw += _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction);
|
||||
} else {
|
||||
gimbalRateDemVecYaw -= _frontend._ahrs.get_dcm_matrix().transposed()*Vector3f(0,0,excess_rate_correction);
|
||||
}
|
||||
}
|
||||
|
||||
// rotate into gimbal frame to calculate the gimbal rate vector required to keep the yaw gimbal centred
|
||||
gimbalRateDemVecYaw = Tvg * gimbalRateDemVecYaw;
|
||||
return gimbalRateDemVecYaw;
|
||||
}
|
||||
|
||||
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecTilt(const Vector3f &ef_target_euler_rad, const Quaternion &quatEst)
|
||||
{
|
||||
// Calculate the gimbal 321 Euler angle estimates relative to earth frame
|
||||
Vector3f eulerEst;
|
||||
quatEst.to_euler(eulerEst.x, eulerEst.y, eulerEst.z);
|
||||
|
||||
// Calculate a demanded quaternion using the demanded roll and pitch and estimated yaw (yaw is slaved to the vehicle)
|
||||
Quaternion quatDem;
|
||||
//TODO receive target from AP_Mount
|
||||
quatDem.from_euler(0, ef_target_euler_rad.y, eulerEst.z);
|
||||
|
||||
//divide the demanded quaternion by the estimated to get the error
|
||||
Quaternion quatErr = quatDem / quatEst;
|
||||
|
||||
// multiply the angle error vector by a gain to calculate a demanded gimbal rate required to control tilt
|
||||
Vector3f gimbalRateDemVecTilt = quaternion_to_vector(quatErr) * K_gimbalRate;
|
||||
return gimbalRateDemVecTilt;
|
||||
}
|
||||
|
||||
Vector3f AP_Mount_MAVLink::getGimbalRateDemVecForward(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst)
|
||||
{
|
||||
// calculate the delta rotation from the last to the current demand where the demand does not incorporate the copters yaw rotation
|
||||
Quaternion quatDemForward;
|
||||
quatDemForward.from_euler(0, ef_target_euler_rad.y, 0);
|
||||
Quaternion deltaQuat = quatDemForward / lastQuatDem;
|
||||
lastQuatDem = quatDemForward;
|
||||
|
||||
// convert to a rotation vector and divide by delta time to obtain a forward path rate demand
|
||||
Vector3f gimbalRateDemVecForward = quaternion_to_vector(deltaQuat) * (1.0f / delta_time);
|
||||
return gimbalRateDemVecForward;
|
||||
}
|
||||
|
||||
#endif // AP_AHRS_NAVEKF_AVAILABLE
|
||||
|
@ -56,7 +56,41 @@ private:
|
||||
|
||||
// keep last gimbal report
|
||||
mavlink_gimbal_report_t _gimbal_report;
|
||||
|
||||
float vehicleYawRateFilt;
|
||||
const float K_gimbalRate;
|
||||
const float angRateLimit;
|
||||
|
||||
// circular frequency (rad/sec) constant of filter applied to forward path vehicle yaw rate
|
||||
// this frequency must not be larger than the update rate (Hz).
|
||||
// reducing it makes the gimbal yaw less responsive to vehicle yaw
|
||||
// increasing it makes the gimbal yawe more responsive to vehicle yaw
|
||||
const float yawRateFiltPole;
|
||||
|
||||
// amount of yaw angle that we permit the gimbal to lag the vehicle when operating in slave mode
|
||||
// reducing this makes the gimbal respond more to vehicle yaw disturbances
|
||||
const float yawErrorLimit;
|
||||
|
||||
// quaternion demanded at the previous time step
|
||||
Quaternion lastQuatDem;
|
||||
|
||||
Vector3f quaternion_to_vector(const Quaternion &quat);
|
||||
Matrix3f vector312_to_rotation_matrix(const Vector3f &vector);
|
||||
Vector3f gimbal_update_control1(const Vector3f &ef_target_euler_rad,
|
||||
float delta_time,
|
||||
const Vector3f &delta_angles,
|
||||
const Vector3f &delta_velocity,
|
||||
const Vector3f &joint_angles);
|
||||
Vector3f gimbal_update_control2(const Vector3f &ef_target_euler_rad,
|
||||
float delta_time,
|
||||
const Vector3f &delta_angles,
|
||||
const Vector3f &delta_velocity,
|
||||
const Vector3f &joint_angles);
|
||||
Vector3f getGimbalRateDemVecYaw(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst, const Vector3f &joint_angles);
|
||||
Vector3f getGimbalRateDemVecTilt(const Vector3f &ef_target_euler_rad, const Quaternion &quatEst);
|
||||
Vector3f getGimbalRateDemVecForward(const Vector3f &ef_target_euler_rad, float delta_time, const Quaternion &quatEst);
|
||||
};
|
||||
|
||||
#endif // AP_AHRS_NAVEKF_AVAILABLE
|
||||
|
||||
#endif // __AP_MOUNT_MAVLINK_H__
|
||||
|
Loading…
Reference in New Issue
Block a user