AP_HAL_Linux: support PWM input for BH hat

This commit is contained in:
Aaron Wang Shi 2017-08-10 11:08:28 +08:00 committed by Lucas De Marchi
parent 8a26ca1ddf
commit 4f2d9c2c4d
4 changed files with 147 additions and 87 deletions

View File

@ -48,6 +48,11 @@ uint8_t RCInput::num_channels()
return _num_channels;
}
void RCInput::set_num_channels(uint8_t num)
{
_num_channels = num;
}
uint16_t RCInput::read(uint8_t ch)
{
if (ch >= _num_channels) {
@ -278,6 +283,14 @@ reset:
memset(&dsm_state, 0, sizeof(dsm_state));
}
void RCInput::_process_pwm_pulse(uint16_t channel, uint16_t width_s0, uint16_t width_s1)
{
if (channel < _num_channels) {
_pwm_values[channel] = width_s1; // range: 700usec ~ 2300usec
rc_input_count++;
}
}
/*
process a RC input pulse of the given width
*/

View File

@ -19,6 +19,7 @@ public:
virtual void init();
bool new_input();
uint8_t num_channels();
void set_num_channels(uint8_t num);
uint16_t read(uint8_t ch);
uint8_t read(uint16_t* periods, uint8_t len);
@ -58,6 +59,7 @@ protected:
void _process_ppmsum_pulse(uint16_t width);
void _process_sbus_pulse(uint16_t width_s0, uint16_t width_s1);
void _process_dsm_pulse(uint16_t width_s0, uint16_t width_s1);
void _process_pwm_pulse(uint16_t channel, uint16_t width_s0, uint16_t width_s1);
// state of ppm decoder
struct {

View File

@ -32,19 +32,34 @@
#endif
//Parametres
#define RCIN_RPI_BUFFER_LENGTH 8
#define RCIN_RPI_BUFFER_LENGTH 4
#define RCIN_RPI_SAMPLE_FREQ 500
#define RCIN_RPI_DMA_CHANNEL 0
#define RCIN_RPI_MAX_COUNTER 1300
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define PPM_INPUT_RPI RPI_GPIO_5
#elif CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
#define PPM_INPUT_RPI NAVIO_GPIO_PPM_IN
#define PAGE_SIZE (4*1024)
#else
#define PPM_INPUT_RPI RPI_GPIO_4
#endif
#define RCIN_RPI_MAX_SIZE_LINE 50
#define RCIN_RPI_MAX_COUNTER (RCIN_RPI_BUFFER_LENGTH * PAGE_SIZE * 2) // 1 circle_buffer
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define RCIN_RPI_SIG_HIGH 0
#define RCIN_RPI_SIG_LOW 1
// Each gpio stands for a rcinput channel,
// the first one in RcChnGpioTbl is channel 1 in receiver
static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
RPI_GPIO_5, RPI_GPIO_6, RPI_GPIO_12,
RPI_GPIO_13, RPI_GPIO_19, RPI_GPIO_20,
RPI_GPIO_21, RPI_GPIO_26
};
#else
#define RCIN_RPI_SIG_HIGH 1
#define RCIN_RPI_SIG_LOW 0
static uint16_t RcChnGpioTbl[RCIN_RPI_CHN_NUM] = {
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_NAVIO
#define PAGE_SIZE (4*1024)
NAVIO_GPIO_PPM_IN
#else
RPI_GPIO_4
#endif
};
#endif // CONFIG_HAL_BOARD_SUBTYPE
//Memory Addresses
#define RCIN_RPI_RPI1_DMA_BASE 0x20007000
@ -278,23 +293,23 @@ void RCInput_RPI::init_ctrl_data()
phys_fifo_addr = ((pcm_base + 0x04) & 0x00FFFFFF) | 0x7e000000;
// Init dma control blocks.
/*We are transferring 1 byte of GPIO register. Every 56th iteration we are
sampling TIMER register, which length is 8 bytes. So, for every 56 samples of GPIO we need
56 * 1 + 8 = 64 bytes of buffer. Value 56 was selected specially to have a 64-byte "block"
/* We are transferring 8 bytes of GPIO register. Every 7th iteration we are
sampling TIMER register, which length is 8 bytes. So, for every 7 samples of GPIO we need
7 * 8 + 8 = 64 bytes of buffer. Value 7 was selected specially to have a 64-byte "block"
TIMER - GPIO. So, we have integer count of such "blocks" at one virtual page. (4096 / 64 = 64
"blocks" per page. As minimum, we must have 2 virtual pages of buffer (to have integer count of
vitual pages for control blocks): for every 56 iterations (64 bytes of buffer) we need 56 control blocks for GPIO
sampling, 56 control blocks for setting frequency and 1 control block for sampling timer, so,
we need 56 + 56 + 1 = 113 control blocks. For integer value, we need 113 pages of control blocks.
Each control block length is 32 bytes. In 113 pages we will have (113 * 4096 / 32) = 113 * 128 control
blocks. 113 * 128 control blocks = 64 * 128 bytes of buffer = 2 pages of buffer.
So, for 56 * 64 * 2 iteration we init DMA for sampling GPIO
and timer to (64 * 64 * 2) = 8192 bytes = 2 pages of buffer.
vitual pages for control blocks): for every 7 iterations (64 bytes of buffer) we need 7 control blocks for GPIO
sampling, 7 control blocks for setting frequency and 1 control block for sampling timer, so,
we need 7 + 7 + 1 = 15 control blocks. For integer value, we need 15 pages of control blocks.
Each control block length is 32 bytes. In 15 pages we will have (15 * 4096 / 32) = 15 * 128 control
blocks. 15 * 128 control blocks = 64 * 128 bytes of buffer = 2 pages of buffer.
So, for 7 * 64 * 2 iteration we init DMA for sampling GPIO
and timer to ((7 * 8 + 8) * 64 * 2) = 8192 bytes = 2 pages of buffer.
*/
for (uint32_t i = 0; i < 56 * 128 * RCIN_RPI_BUFFER_LENGTH; i++) {
//Transfer timer every 56th sample
if (i % 56 == 0) {
for (uint32_t i = 0; i < 7 * 128 * RCIN_RPI_BUFFER_LENGTH; i++) {
// Transfer timer every 7th sample
if (i % 7 == 0) {
cbp_curr = (dma_cb_t*)con_blocks->get_page(con_blocks->_virt_pages, cbp);
init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP | RCIN_RPI_DMA_DEST_INC | RCIN_RPI_DMA_SRC_INC, RCIN_RPI_TIMER_BASE,
@ -303,25 +318,24 @@ void RCInput_RPI::init_ctrl_data()
0,
(uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
cbp + sizeof(dma_cb_t)));
dest += 8;
cbp += sizeof(dma_cb_t);
}
// Transfer GPIO (1 byte)
// Transfer GPIO (8 bytes)
cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
init_dma_cb(&cbp_curr, RCIN_RPI_DMA_NO_WIDE_BURSTS | RCIN_RPI_DMA_WAIT_RESP, RCIN_RPI_GPIO_LEV0_ADDR,
(uintptr_t)circle_buffer->get_page(circle_buffer->_phys_pages, dest),
1,
8,
0,
(uintptr_t)con_blocks->get_page(con_blocks->_phys_pages,
cbp + sizeof(dma_cb_t)));
dest += 1;
dest += 8;
cbp += sizeof(dma_cb_t);
// Delay (for setting sampling frequency)
/* DMA is waiting data request signal (DREQ) from PCM. PCM is set for 1 MhZ freqency, so,
/* DMA is waiting data request signal (DREQ) from PCM. PCM is set for 5 MhZ freqency, so,
each sample of GPIO is limited by writing to PCA queue.
*/
cbp_curr = (dma_cb_t *)con_blocks->get_page(con_blocks->_virt_pages, cbp);
@ -413,17 +427,9 @@ void RCInput_RPI::set_sigaction()
// Initial setup of variables
RCInput_RPI::RCInput_RPI():
circle_buffer{nullptr},
con_blocks{nullptr},
prev_tick(0),
delta_time(0),
curr_tick_inc(1000/RCIN_RPI_SAMPLE_FREQ),
curr_pointer(0),
curr_channel(0),
width_s0(0),
curr_signal(0),
last_signal(228),
state(RCIN_RPI_INITIAL_STATE)
curr_channel(0)
{
}
@ -448,20 +454,26 @@ void RCInput_RPI::init_registers()
void RCInput_RPI::init()
{
uint64_t signal_states(0);
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_ERLEBRAIN2
int version = 2;
#else
int version = UtilRPI::from(hal.util)->get_rpi_version();
#endif
set_physical_addresses(version);
// Init memory for buffer and for DMA control blocks.
// See comments in "init_ctrl_data()" to understand values "2" and "15"
circle_buffer = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 2, version);
con_blocks = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 113, version);
con_blocks = new Memory_table(RCIN_RPI_BUFFER_LENGTH * 15, version);
init_registers();
// Enable PPM input
enable_pin = hal.gpio->channel(PPM_INPUT_RPI);
enable_pin->mode(HAL_GPIO_INPUT);
// Enable PPM or PWM input
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
rc_channels[i].enable_pin = hal.gpio->channel(RcChnGpioTbl[i]);
rc_channels[i].enable_pin->mode(HAL_GPIO_INPUT);
}
// Configuration
set_sigaction();
@ -474,11 +486,17 @@ void RCInput_RPI::init()
// Reading first sample
curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
prev_tick = curr_tick;
curr_pointer += 8;
curr_signal = *((uint8_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)) & 0x10 ? 1 : 0;
last_signal = curr_signal;
curr_pointer++;
signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
rc_channels[i].prev_tick = curr_tick;
rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
: RCIN_RPI_SIG_LOW;
rc_channels[i].last_signal = rc_channels[i].curr_signal;
}
curr_pointer += 8;
set_num_channels(RCIN_RPI_CHN_NUM);
_initialized = true;
}
@ -487,6 +505,7 @@ void RCInput_RPI::init()
void RCInput_RPI::_timer_tick()
{
uint32_t counter = 0;
uint64_t signal_states(0);
if (!_initialized) {
return;
@ -494,6 +513,7 @@ void RCInput_RPI::_timer_tick()
// Now we are getting address in which DMAC is writing at current moment
dma_cb_t *ad = (dma_cb_t *)con_blocks->get_virt_addr(dma_reg[RCIN_RPI_DMA_CONBLK_AD | RCIN_RPI_DMA_CHANNEL << 8]);
if (!ad) {
debug("DMA sampling stopped, restarting...\n");
init_ctrl_data();
@ -523,43 +543,53 @@ void RCInput_RPI::_timer_tick()
}
// Processing ready bytes
for (; counter > 0x40; counter--) {
for (;counter > 0x40;) {
// Is it timer sample?
if (curr_pointer % (64) == 0) {
curr_tick = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
curr_pointer += 8;
counter -= 8;
}
// Reading required bit
curr_signal = *((uint8_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer)) & 0x10 ? 1 : 0;
signal_states = *((uint64_t *)circle_buffer->get_page(circle_buffer->_virt_pages, curr_pointer));
for (uint32_t i = 0; i < RCIN_RPI_CHN_NUM; ++i) {
rc_channels[i].curr_signal = (signal_states & (1 << RcChnGpioTbl[i])) ? RCIN_RPI_SIG_HIGH
: RCIN_RPI_SIG_LOW;
// If the signal changed
if (curr_signal != last_signal) {
delta_time = curr_tick - prev_tick;
prev_tick = curr_tick;
switch (state) {
if (rc_channels[i].curr_signal != rc_channels[i].last_signal) {
rc_channels[i].delta_time = curr_tick - rc_channels[i].prev_tick;
rc_channels[i].prev_tick = curr_tick;
switch (rc_channels[i].state) {
case RCIN_RPI_INITIAL_STATE:
state = RCIN_RPI_ZERO_STATE;
rc_channels[i].state = RCIN_RPI_ZERO_STATE;
break;
case RCIN_RPI_ZERO_STATE:
if (curr_signal == 0) {
width_s0 = (uint16_t)delta_time;
state = RCIN_RPI_ONE_STATE;
if (rc_channels[i].curr_signal == 0) {
rc_channels[i].width_s0 = (uint16_t)rc_channels[i].delta_time;
rc_channels[i].state = RCIN_RPI_ONE_STATE;
}
break;
case RCIN_RPI_ONE_STATE:
if (curr_signal == 1) {
width_s1 = (uint16_t)delta_time;
state = RCIN_RPI_ZERO_STATE;
_process_rc_pulse(width_s0, width_s1);
if (rc_channels[i].curr_signal == 1) {
rc_channels[i].width_s1 = (uint16_t)rc_channels[i].delta_time;
rc_channels[i].state = RCIN_RPI_ZERO_STATE;
if (1 == RCIN_RPI_CHN_NUM) {
_process_rc_pulse(rc_channels[i].width_s0,
rc_channels[i].width_s1);
}
else {
_process_pwm_pulse(i, rc_channels[i].width_s0,
rc_channels[i].width_s1);
}
}
break;
}
}
last_signal = curr_signal;
curr_pointer++;
rc_channels[i].last_signal = rc_channels[i].curr_signal;
}
curr_pointer += 8;
counter -= 8;
if (curr_pointer >= circle_buffer->get_page_count() * PAGE_SIZE) {
curr_pointer = 0;
}
@ -567,4 +597,4 @@ void RCInput_RPI::_timer_tick()
}
}
#endif
#endif // CONFIG_HAL_BOARD_SUBTYPE

View File

@ -21,6 +21,11 @@
#include <assert.h>
#include <queue>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BH
#define RCIN_RPI_CHN_NUM 8
#else
#define RCIN_RPI_CHN_NUM 1
#endif
namespace Linux {
@ -98,24 +103,34 @@ private:
Memory_table *con_blocks;
uint64_t curr_tick;
uint64_t prev_tick;
uint64_t delta_time;
uint32_t curr_tick_inc;
uint32_t curr_pointer;
uint32_t curr_channel;
struct RcChannel {
RcChannel() :
prev_tick(0), delta_time(0),
width_s0(0), width_s1(0),
curr_signal(0), last_signal(0),
enable_pin(0), state(RCIN_RPI_INITIAL_STATE)
{}
uint64_t prev_tick;
uint64_t delta_time;
uint16_t width_s0;
uint16_t width_s1;
uint8_t curr_signal;
uint8_t last_signal;
bool _initialized = false;
state_t state;
AP_HAL::DigitalSource *enable_pin;
} rc_channels[RCIN_RPI_CHN_NUM];
bool _initialized = false;
void init_dma_cb(dma_cb_t** cbp, uint32_t mode, uint32_t source, uint32_t dest, uint32_t length, uint32_t stride, uint32_t next_cb);
void* map_peripheral(uint32_t base, uint32_t len);