HAL_ChibiOS: update ppm to use Extended ICU driver

This commit is contained in:
bugobliterator 2018-01-13 06:19:28 +05:30 committed by Andrew Tridgell
parent 6d8d8630bc
commit 445ba6ed39
6 changed files with 232 additions and 59 deletions

View File

@ -30,8 +30,8 @@ using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
void RCInput::init()
{
#if HAL_USE_ICU == TRUE
ppm_init(1000000, true);
#if HAL_USE_EICU == TRUE
ppm_init(1000000, false);
#endif
chMtxObjectInit(&rcin_mutex);
_init = true;
@ -166,7 +166,7 @@ void RCInput::_timer_tick(void)
if (!_init) {
return;
}
#if HAL_USE_ICU == TRUE
#if HAL_USE_EICU == TRUE
if (ppm_available()) {
chMtxLock(&rcin_mutex);
_num_channels = ppm_read_bulk(_rc_values, RC_INPUT_MAX_CHANNELS);

View File

@ -18,10 +18,6 @@
#include "hwdef.h"
#ifndef PPM_ICU_CHANNEL
#define PPM_ICU_CHANNEL ICU_CHANNEL_2
#endif
#ifndef HAL_BOARD_INIT_HOOK_DEFINE
#define HAL_BOARD_INIT_HOOK_DEFINE
#endif

View File

@ -253,6 +253,22 @@
#define STM32_ICU_TIM8_IRQ_PRIORITY 7
#define STM32_ICU_TIM9_IRQ_PRIORITY 7
/*
* EICU driver system settings.
*/
#define STM32_EICU_TIM1_IRQ_PRIORITY 7
#define STM32_EICU_TIM2_IRQ_PRIORITY 7
#define STM32_EICU_TIM3_IRQ_PRIORITY 7
#define STM32_EICU_TIM4_IRQ_PRIORITY 7
#define STM32_EICU_TIM5_IRQ_PRIORITY 7
#define STM32_EICU_TIM8_IRQ_PRIORITY 7
#define STM32_EICU_TIM9_IRQ_PRIORITY 7
#define STM32_EICU_TIM10_IRQ_PRIORITY 7
#define STM32_EICU_TIM11_IRQ_PRIORITY 7
#define STM32_EICU_TIM12_IRQ_PRIORITY 7
#define STM32_EICU_TIM13_IRQ_PRIORITY 7
#define STM32_EICU_TIM14_IRQ_PRIORITY 7
/*
* MAC driver system settings.
*/

View File

@ -15,56 +15,104 @@
*/
#include "ppm.h"
/*
* PPM decoder tuning parameters.
*
* The PPM decoder works as follows.
*
* Initially, the decoder waits in the UNSYNCH state for two edges
* separated by PPM_MIN_START. Once the second edge is detected,
* the decoder moves to the ARM state.
*
* The ARM state expects an edge within PPM_MAX_PULSE_WIDTH, being the
* timing mark for the first channel. If this is detected, it moves to
* the INACTIVE state.
*
* The INACTIVE phase waits for and discards the next edge, as it is not
* significant. Once the edge is detected, it moves to the ACTIVE stae.
*
* The ACTIVE state expects an edge within PPM_MAX_PULSE_WIDTH, and when
* received calculates the time from the previous mark and records
* this time as the value for the next channel.
*
* If at any time waiting for an edge, the delay from the previous edge
* exceeds PPM_MIN_START the frame is deemed to have ended and the recorded
* values are advertised to clients.
*/
#define PPM_MAX_PULSE_WIDTH 500 /* maximum width of a pulse */
#define PPM_MIN_CHANNEL_VALUE 800 /* shortest valid channel signal */
#define PPM_MAX_CHANNEL_VALUE 2200 /* longest valid channel signal */
#define PPM_MIN_START 2500 /* shortest valid start gap */
#if HAL_USE_ICU
/* Input timeout - after this interval we assume signal is lost */
#define PPM_INPUT_TIMEOUT 100 * 1000 /* 100ms */
static ICUConfig icucfg; //Input Capture Unit Config
static uint16_t ppm_buffer[10] = {0};
static bool updated[10] = {0};
static bool available;
/* Number of same-sized frames required to 'lock' */
#define PPM_CHANNEL_LOCK 3 /* should be less than the input timeout */
/* decoded PPM buffer */
#define PPM_MIN_CHANNELS 4
#define PPM_MAX_CHANNELS 12
/*
* Public decoder state
*/
uint16_t ppm_buffer[PPM_MAX_CHANNELS];
unsigned ppm_decoded_channels;
static uint16_t ppm_temp_buffer[PPM_MAX_CHANNELS];
#if HAL_USE_EICU
/* PPM decoder state machine */
static struct {
uint16_t last_edge; /* last capture time */
uint16_t last_mark; /* last significant edge */
unsigned next_channel;
unsigned count_max;
enum {
UNSYNCH = 0,
ARM,
ACTIVE,
INACTIVE
} phase;
} ppm;
static EICUChannelConfig eicuchancfg; //Input Capture Unit Config
static EICUConfig eicucfg; //Input Capture Unit Config
static uint8_t buf_ptr = 0;
static uint8_t num_channels = 0;
static void ppm_measurement_cb(ICUDriver*);
static void ppm_measurement_cb(EICUDriver *eicup, eicuchannel_t channel);
//Initiallise ppm ICU with requested configuration
bool ppm_init(uint32_t freq, bool active_high)
{
icumode_t ppm_active_mode;
if (active_high) {
ppm_active_mode = ICU_INPUT_ACTIVE_HIGH;
eicuchancfg.alvl = EICU_INPUT_ACTIVE_HIGH;
} else {
ppm_active_mode = ICU_INPUT_ACTIVE_LOW;
eicuchancfg.alvl = EICU_INPUT_ACTIVE_LOW;
}
icucfg.mode = ppm_active_mode;
icucfg.frequency = freq;
icucfg.channel = PPM_ICU_CHANNEL;
icucfg.width_cb = NULL;
icucfg.period_cb = ppm_measurement_cb;
icucfg.overflow_cb = NULL;
icucfg.dier = 0;
icuStart(&HAL_ICU_TIMER, &icucfg);
icuStartCapture(&HAL_ICU_TIMER);
icuEnableNotifications(&HAL_ICU_TIMER);
eicuchancfg.capture_cb = ppm_measurement_cb;
memset(&eicucfg, 0, sizeof(eicucfg));
eicucfg.frequency = freq;
eicucfg.dier = 0;
eicucfg.iccfgp[PPM_EICU_CHANNEL] = &eicuchancfg;
eicuStart(&PPM_EICU_TIMER, &eicucfg);
eicuEnable(&PPM_EICU_TIMER);
return true;
}
uint16_t ppm_read(uint8_t channel)
{
//return 0 if channel requested is out range
if(channel >= num_channels) {
if(channel >= ppm_decoded_channels) {
return 0;
}
updated[channel] = false;
return ppm_buffer[channel];
}
uint8_t ppm_read_bulk(uint16_t periods[], uint8_t len)
{
uint8_t i;
for(i = 0; (i < num_channels) && (i < len); i++) {
for(i = 0; (i < ppm_decoded_channels) && (i < len); i++) {
periods[i] = ppm_buffer[i];
}
return i;
@ -72,33 +120,147 @@ uint8_t ppm_read_bulk(uint16_t periods[], uint8_t len)
bool ppm_available()
{
uint8_t i;
for (i = 0; i < 10; i++) {
if (updated[i]) {
return true;
}
}
return false;
return (ppm_decoded_channels > 0);
}
uint8_t ppm_num_channels()
{
return num_channels;
return ppm_decoded_channels;
}
static void ppm_measurement_cb(ICUDriver *icup)
void
ppm_input_decode(bool reset, unsigned count)
{
uint16_t period = icuGetPeriodX(icup);
if (period >= 2700 || buf_ptr >= 10) {
//This is a sync pulse let's reset buffer pointer
num_channels = buf_ptr + 1;
buf_ptr = 0;
uint16_t width;
uint16_t interval;
unsigned i;
/* if we missed an edge, we have to give up */
if (reset) {
goto error;
}
/* how long since the last edge? */
width = count - ppm.last_edge;
if (count < ppm.last_edge) {
width += ppm.count_max; /* handle wrapped count */
}
ppm.last_edge = count;
/*
* If this looks like a start pulse, then push the last set of values
* and reset the state machine.
*
* Note that this is not a "high performance" design; it implies a whole
* frame of latency between the pulses being received and their being
* considered valid.
*/
if (width >= PPM_MIN_START) {
/*
* If the number of channels changes unexpectedly, we don't want
* to just immediately jump on the new count as it may be a result
* of noise or dropped edges. Instead, take a few frames to settle.
*/
if (ppm.next_channel != ppm_decoded_channels) {
static unsigned new_channel_count;
static unsigned new_channel_holdoff;
if (new_channel_count != ppm.next_channel) {
/* start the lock counter for the new channel count */
new_channel_count = ppm.next_channel;
new_channel_holdoff = PPM_CHANNEL_LOCK;
} else if (new_channel_holdoff > 0) {
/* this frame matched the last one, decrement the lock counter */
new_channel_holdoff--;
} else {
if(period > 900) {
updated[buf_ptr] = true;
ppm_buffer[buf_ptr] = period;
/* we have seen PPM_CHANNEL_LOCK frames with the new count, accept it */
ppm_decoded_channels = new_channel_count;
new_channel_count = 0;
}
buf_ptr++;
} else {
/* frame channel count matches expected, let's use it */
if (ppm.next_channel > PPM_MIN_CHANNELS) {
for (i = 0; i < ppm.next_channel; i++) {
ppm_buffer[i] = ppm_temp_buffer[i];
}
}
#endif // HAL_USE_ICU
}
/* reset for the next frame */
ppm.next_channel = 0;
/* next edge is the reference for the first channel */
ppm.phase = ARM;
return;
}
switch (ppm.phase) {
case UNSYNCH:
/* we are waiting for a start pulse - nothing useful to do here */
return;
case ARM:
/* we expect a pulse giving us the first mark */
if (width > PPM_MAX_PULSE_WIDTH) {
goto error; /* pulse was too long */
}
/* record the mark timing, expect an inactive edge */
ppm.last_mark = count;
ppm.phase = INACTIVE;
return;
case INACTIVE:
/* this edge is not interesting, but now we are ready for the next mark */
ppm.phase = ACTIVE;
/* note that we don't bother looking at the timing of this edge */
return;
case ACTIVE:
/* we expect a well-formed pulse */
if (width > PPM_MAX_PULSE_WIDTH) {
goto error; /* pulse was too long */
}
/* determine the interval from the last mark */
interval = count - ppm.last_mark;
ppm.last_mark = count;
/* if the mark-mark timing is out of bounds, abandon the frame */
if ((interval < PPM_MIN_CHANNEL_VALUE) || (interval > PPM_MAX_CHANNEL_VALUE)) {
goto error;
}
/* if we have room to store the value, do so */
if (ppm.next_channel < PPM_MAX_CHANNELS) {
ppm_temp_buffer[ppm.next_channel++] = interval;
}
ppm.phase = INACTIVE;
return;
}
/* the state machine is corrupted; reset it */
error:
/* we don't like the state of the decoder, reset it and try again */
ppm.phase = UNSYNCH;
ppm_decoded_channels = 0;
}
static void ppm_measurement_cb(EICUDriver *eicup, eicuchannel_t channel) {
ppm_input_decode(false, eicup->tim->CCR[channel]);
}
#endif // HAL_USE_EICU

View File

@ -83,7 +83,6 @@ PC2 MPU9250_CS CS
PC3 LED_SAFETY OUTPUT
PC4 SAFETY_IN INPUT
PC5 VDD_PERIPH_EN OUTPUT HIGH
PC7 RC_INPUT INPUT
PC8 SDIO_D0 SDIO
PC9 SDIO_D1 SDIO

View File

@ -479,10 +479,10 @@ def write_PWM_config(f):
chan = int(ppm_in.label[7:])
n = int(ppm_in.type[3])
f.write('// PPM input config\n')
f.write('#define HAL_USE_ICU TRUE\n')
f.write('#define HAL_ICU_TIMER ICUD%u\n' % n)
f.write('#define STM32_ICU_USE_TIM%u TRUE\n' % n)
f.write('#define HAL_ICU_CHANNEL ICU_CHANNEL_%u\n' % chan)
f.write('#define HAL_USE_EICU TRUE\n')
f.write('#define PPM_EICU_TIMER EICUD%u\n' % n)
f.write('#define STM32_EICU_USE_TIM%u TRUE\n' % n)
f.write('#define PPM_EICU_CHANNEL EICU_CHANNEL_%u\n' % chan)
f.write('\n')
f.write('// PWM timer config\n')
for t in sorted(pwm_timers):