Copter: integrate trad heli AttControl
This commit is contained in:
parent
eda376c7f6
commit
3b0de0d23d
@ -110,6 +110,7 @@
|
||||
#include <APM_PI.h> // PI library
|
||||
#include <AC_PID.h> // PID library
|
||||
#include <AC_AttitudeControl.h> // Attitude control library
|
||||
#include <AC_AttitudeControl_Heli.h> // Attitude control library for traditional helicopter
|
||||
#include <AC_PosControl.h> // Position control library
|
||||
#include <RC_Channel.h> // RC Channel Library
|
||||
#include <AP_Motors.h> // AP Motors library
|
||||
@ -757,9 +758,15 @@ static AP_InertialNav inertial_nav(&ahrs, &barometer, g_gps, gps_glitch);
|
||||
// Attitude, Position and Waypoint navigation objects
|
||||
// To-Do: move inertial nav up or other navigation variables down here
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
#if FRAME_CONFIG == HELI_FRAME
|
||||
AC_AttitudeControl_Heli attitude_control(ahrs, ins, aparm, motors, g.pi_stabilize_roll, g.pi_stabilize_pitch, g.pi_stabilize_yaw,
|
||||
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw,
|
||||
g.rc_1.servo_out, g.rc_2.servo_out, g.rc_4.servo_out, g.rc_3.servo_out);
|
||||
#else
|
||||
AC_AttitudeControl attitude_control(ahrs, ins, aparm, motors, g.pi_stabilize_roll, g.pi_stabilize_pitch, g.pi_stabilize_yaw,
|
||||
g.pid_rate_roll, g.pid_rate_pitch, g.pid_rate_yaw,
|
||||
g.rc_1.servo_out, g.rc_2.servo_out, g.rc_4.servo_out, g.rc_3.servo_out);
|
||||
#endif
|
||||
AC_PosControl pos_control(ahrs, inertial_nav, motors, attitude_control,
|
||||
g.pi_alt_hold, g.pid_throttle_rate, g.pid_throttle_accel,
|
||||
g.pi_loiter_lat, g.pi_loiter_lon, g.pid_loiter_rate_lat, g.pid_loiter_rate_lon);
|
||||
|
@ -1011,9 +1011,15 @@ const AP_Param::Info var_info[] PROGMEM = {
|
||||
// @Path: ../libraries/AC_WPNav/AC_Circle.cpp
|
||||
GOBJECT(circle_nav, "CIRCLE_", AC_Circle),
|
||||
|
||||
#if FRAME_CONFIG == HELI_FRAME
|
||||
// @Group: ATCON_
|
||||
// @Path: ../libraries/AC_AttitudeControl/AC_AttitudeControl_Heli.cpp
|
||||
GOBJECT(attitude_control, "ATTCON_", AC_AttitudeControl_Heli),
|
||||
#else
|
||||
// @Group: ATCON_
|
||||
// @Path: ../libraries/AC_AttitudeControl/AC_AttitudeControl.cpp
|
||||
GOBJECT(attitude_control, "ATTCON_", AC_AttitudeControl),
|
||||
#endif
|
||||
|
||||
// @Group: POSCON_
|
||||
// @Path: ../libraries/AC_AttitudeControl/AC_PosControl.cpp
|
||||
|
@ -72,6 +72,8 @@ static void check_dynamic_flight(void)
|
||||
if (heli_dynamic_flight_counter >= 100) {
|
||||
heli_flags.dynamic_flight = true;
|
||||
heli_dynamic_flight_counter = 100;
|
||||
// update attitude control's leaky i term setting
|
||||
attitude_control.use_leaky_i(!heli_flags.dynamic_flight);
|
||||
}
|
||||
}
|
||||
}else{
|
||||
@ -81,164 +83,13 @@ static void check_dynamic_flight(void)
|
||||
heli_dynamic_flight_counter--;
|
||||
}else{
|
||||
heli_flags.dynamic_flight = false;
|
||||
// update attitude control's leaky i term setting
|
||||
attitude_control.use_leaky_i(!heli_flags.dynamic_flight);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// heli_integrated_swash_controller - convert desired roll and pitch rate to roll and pitch swash angles
|
||||
// should be called at 100hz
|
||||
// output placed directly into g.rc_1.servo_out and g.rc_2.servo_out
|
||||
static void heli_integrated_swash_controller(int32_t target_roll_rate, int32_t target_pitch_rate)
|
||||
{
|
||||
int32_t roll_p, roll_i, roll_d, roll_ff; // used to capture pid values for logging
|
||||
int32_t pitch_p, pitch_i, pitch_d, pitch_ff;
|
||||
int32_t current_roll_rate, current_pitch_rate; // this iteration's rate
|
||||
int32_t roll_rate_error, pitch_rate_error; // simply target_rate - current_rate
|
||||
int32_t roll_output, pitch_output; // output from pid controller
|
||||
static bool roll_pid_saturated, pitch_pid_saturated; // tracker from last loop if the PID was saturated
|
||||
|
||||
current_roll_rate = (omega.x * DEGX100); // get current roll rate
|
||||
current_pitch_rate = (omega.y * DEGX100); // get current pitch rate
|
||||
|
||||
roll_rate_error = target_roll_rate - current_roll_rate;
|
||||
pitch_rate_error = target_pitch_rate - current_pitch_rate;
|
||||
|
||||
roll_p = g.pid_rate_roll.get_p(roll_rate_error);
|
||||
pitch_p = g.pid_rate_pitch.get_p(pitch_rate_error);
|
||||
|
||||
if (roll_pid_saturated){
|
||||
roll_i = g.pid_rate_roll.get_integrator(); // Locked Integrator due to PID saturation on previous cycle
|
||||
} else {
|
||||
if (motors.has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim
|
||||
if (target_roll_rate > -50 && target_roll_rate < 50){ // Frozen at high rates
|
||||
roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt);
|
||||
} else {
|
||||
roll_i = g.pid_rate_roll.get_integrator();
|
||||
}
|
||||
} else {
|
||||
if (heli_flags.dynamic_flight){
|
||||
roll_i = g.pid_rate_roll.get_i(roll_rate_error, G_Dt);
|
||||
} else {
|
||||
roll_i = g.pid_rate_roll.get_leaky_i(roll_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (pitch_pid_saturated){
|
||||
pitch_i = g.pid_rate_pitch.get_integrator(); // Locked Integrator due to PID saturation on previous cycle
|
||||
} else {
|
||||
if (motors.has_flybar()) { // Mechanical Flybars get regular integral for rate auto trim
|
||||
if (target_pitch_rate > -50 && target_pitch_rate < 50){ // Frozen at high rates
|
||||
pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt);
|
||||
} else {
|
||||
pitch_i = g.pid_rate_pitch.get_integrator();
|
||||
}
|
||||
} else {
|
||||
if (heli_flags.dynamic_flight){
|
||||
pitch_i = g.pid_rate_pitch.get_i(pitch_rate_error, G_Dt);
|
||||
} else {
|
||||
pitch_i = g.pid_rate_pitch.get_leaky_i(pitch_rate_error, G_Dt, RATE_INTEGRATOR_LEAK_RATE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
roll_d = g.pid_rate_roll.get_d(target_roll_rate, G_Dt);
|
||||
pitch_d = g.pid_rate_pitch.get_d(target_pitch_rate, G_Dt);
|
||||
|
||||
roll_ff = g.heli_roll_ff * target_roll_rate;
|
||||
pitch_ff = g.heli_pitch_ff * target_pitch_rate;
|
||||
|
||||
roll_output = roll_p + roll_i + roll_d + roll_ff;
|
||||
pitch_output = pitch_p + pitch_i + pitch_d + pitch_ff;
|
||||
|
||||
#if HELI_CC_COMP == ENABLED
|
||||
// Do cross-coupling compensation for low rpm helis
|
||||
// Credit: Jolyon Saunders
|
||||
// Note: This is not widely tested at this time. Will not be used by default yet.
|
||||
float cc_axis_ratio = 2.0f; // Ratio of compensation on pitch vs roll axes. Number >1 means pitch is affected more than roll
|
||||
float cc_kp = 0.0002f; // Compensation p term. Setting this to zero gives h_phang only, while increasing it will increase the p term of correction
|
||||
float cc_kd = 0.127f; // Compensation d term, scaled. This accounts for flexing of the blades, dampers etc. Originally was (motors.ext_gyro_gain * 0.0001)
|
||||
float cc_angle, cc_total_output;
|
||||
uint32_t cc_roll_d, cc_pitch_d, cc_sum_d;
|
||||
int32_t cc_scaled_roll;
|
||||
int32_t cc_roll_output; // Used to temporarily hold output while rotation is being calculated
|
||||
int32_t cc_pitch_output; // Used to temporarily hold output while rotation is being calculated
|
||||
static int32_t last_roll_output = 0;
|
||||
static int32_t last_pitch_output = 0;
|
||||
|
||||
cc_scaled_roll = roll_output / cc_axis_ratio; // apply axis ratio to roll
|
||||
cc_total_output = safe_sqrt(cc_scaled_roll * cc_scaled_roll + pitch_output * pitch_output) * cc_kp;
|
||||
|
||||
// find the delta component
|
||||
cc_roll_d = (roll_output - last_roll_output) / cc_axis_ratio;
|
||||
cc_pitch_d = pitch_output - last_pitch_output;
|
||||
cc_sum_d = safe_sqrt(cc_roll_d * cc_roll_d + cc_pitch_d * cc_pitch_d);
|
||||
|
||||
// do the magic.
|
||||
cc_angle = cc_kd * cc_sum_d * cc_total_output - cc_total_output * motors.get_phase_angle();
|
||||
|
||||
// smooth angle variations, apply constraints
|
||||
cc_angle = rate_dynamics_filter.apply(cc_angle);
|
||||
cc_angle = constrain_float(cc_angle, -90.0f, 0.0f);
|
||||
cc_angle = radians(cc_angle);
|
||||
|
||||
// Make swash rate vector
|
||||
Vector2f swashratevector;
|
||||
swashratevector.x = cosf(cc_angle);
|
||||
swashratevector.y = sinf(cc_angle);
|
||||
swashratevector.normalize();
|
||||
|
||||
// rotate the output
|
||||
cc_roll_output = roll_output;
|
||||
cc_pitch_output = pitch_output;
|
||||
roll_output = - (cc_pitch_output * swashratevector.y - cc_roll_output * swashratevector.x);
|
||||
pitch_output = cc_pitch_output * swashratevector.x + cc_roll_output * swashratevector.y;
|
||||
|
||||
// make current outputs old, for next iteration
|
||||
last_roll_output = cc_roll_output;
|
||||
last_pitch_output = cc_pitch_output;
|
||||
# endif // HELI_CC_COMP
|
||||
|
||||
#if HELI_PIRO_COMP == ENABLED
|
||||
if (control_mode <= ACRO){
|
||||
|
||||
int32_t piro_roll_i, piro_pitch_i; // used to hold i term while doing prio comp
|
||||
|
||||
piro_roll_i = roll_i;
|
||||
piro_pitch_i = pitch_i;
|
||||
|
||||
Vector2f yawratevector;
|
||||
yawratevector.x = cos(-omega.z/100);
|
||||
yawratevector.y = sin(-omega.z/100);
|
||||
yawratevector.normalize();
|
||||
|
||||
roll_i = piro_roll_i * yawratevector.x - piro_pitch_i * yawratevector.y;
|
||||
pitch_i = piro_pitch_i * yawratevector.x + piro_roll_i * yawratevector.y;
|
||||
|
||||
g.pid_rate_pitch.set_integrator(pitch_i);
|
||||
g.pid_rate_roll.set_integrator(roll_i);
|
||||
}
|
||||
#endif //HELI_PIRO_COMP
|
||||
|
||||
if (labs(roll_output) > 4500){
|
||||
roll_output = constrain_int32(roll_output, -4500, 4500); // constrain output
|
||||
roll_pid_saturated = true; // freeze integrator next cycle
|
||||
} else {
|
||||
roll_pid_saturated = false; // unfreeze integrator
|
||||
}
|
||||
|
||||
if (labs(pitch_output) > 4500){
|
||||
pitch_output = constrain_int32(pitch_output, -4500, 4500); // constrain output
|
||||
pitch_pid_saturated = true; // freeze integrator next cycle
|
||||
} else {
|
||||
pitch_pid_saturated = false; // unfreeze integrator
|
||||
}
|
||||
|
||||
g.rc_1.servo_out = roll_output;
|
||||
g.rc_2.servo_out = pitch_output;
|
||||
}
|
||||
|
||||
static int16_t
|
||||
get_heli_rate_yaw(int32_t target_rate)
|
||||
{
|
||||
|
Loading…
Reference in New Issue
Block a user