SITL: add tradheli support for autorotation simulation
This commit is contained in:
parent
ab0768871b
commit
062dade189
@ -80,7 +80,7 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
update_wind(input);
|
update_wind(input);
|
||||||
|
|
||||||
motor_interlock = input.servos[7] > 1400;
|
motor_interlock = input.servos[7] > 1400;
|
||||||
|
|
||||||
float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1);
|
float rsc = constrain_float((input.servos[7]-1000) / 1000.0f, 0, 1);
|
||||||
float rsc_scale = rsc/rsc_setpoint;
|
float rsc_scale = rsc/rsc_setpoint;
|
||||||
|
|
||||||
@ -134,15 +134,12 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
|
|
||||||
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
||||||
|
|
||||||
// determine RPM
|
|
||||||
rpm[0] = update_rpm(motor_interlock, dt);
|
|
||||||
|
|
||||||
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
||||||
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
||||||
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
||||||
|
|
||||||
// Calculate main rotor torque effect on body
|
// determine RPM
|
||||||
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||||
|
|
||||||
// Calculate rotor tip path plane angle
|
// Calculate rotor tip path plane angle
|
||||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||||
@ -157,7 +154,7 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
// rotational acceleration, in rad/s/s, in body frame
|
// rotational acceleration, in rad/s/s, in body frame
|
||||||
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
||||||
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
||||||
rot_accel.z = tail_rotor_torque + torque_effect_accel;
|
rot_accel.z = tail_rotor_torque - torque_effect_accel;
|
||||||
|
|
||||||
lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
lateral_y_thrust = tail_rotor_thrust / mass + GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
||||||
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
lateral_x_thrust = -1.0f * GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
||||||
@ -190,12 +187,12 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
|
|
||||||
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
float tail_rotor = (_servos_delayed[3]-1000) / 1000.0f;
|
||||||
|
|
||||||
// determine RPM
|
|
||||||
rpm[0] = update_rpm(motor_interlock, dt);
|
|
||||||
|
|
||||||
// collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust
|
// collective adjusted for coll_min(1460) to coll_max(1740) as 0 to 1 with 1500 being zero thrust
|
||||||
float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f);
|
float coll = 3.51 * ((swash1+swash2+swash3) / 3.0f - 0.5f);
|
||||||
|
|
||||||
|
// determine RPM
|
||||||
|
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||||
|
|
||||||
// Calculate rotor tip path plane angle
|
// Calculate rotor tip path plane angle
|
||||||
float roll_cyclic = 1.283f * (swash1 - swash2);
|
float roll_cyclic = 1.283f * (swash1 - swash2);
|
||||||
float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3);
|
float pitch_cyclic = 1.48f * ((swash1+swash2) / 2.0f - swash3);
|
||||||
@ -275,17 +272,14 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
float Yv = -0.375;
|
float Yv = -0.375;
|
||||||
float Zw = -0.375;
|
float Zw = -0.375;
|
||||||
|
|
||||||
// determine RPM
|
|
||||||
rpm[0] = update_rpm(motor_interlock, dt);
|
|
||||||
|
|
||||||
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
// thrust calculated based on 5 deg hover collective for 10lb aircraft at 1500RPM
|
||||||
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
float coll = 50.0f * (swash1+swash2+swash3) / 3.0f - 25.0f;
|
||||||
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
thrust = thrust_scale * sq(rpm[0] * 0.104667f) * (0.25* (coll - hover_coll) + hover_coll);
|
||||||
|
|
||||||
// Calculate main rotor torque effect on body
|
// determine RPM
|
||||||
torque_effect_accel = -1 * sq(rpm[0] * 0.104667f) * (torque_mpog + torque_scale * fabsf(coll)) / izz;
|
rpm[0] = update_rpm(rpm[0], rsc, torque_effect_accel, coll, dt);
|
||||||
|
|
||||||
// Calculate rotor tip path plane angle
|
// Calculate rotor tip path plane angle
|
||||||
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
float roll_cyclic = 1.283 * (swash1 - swash2) / cyclic_scalar;
|
||||||
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
float pitch_cyclic = 1.48 * ((swash1+swash2) / 2.0f - swash3) / cyclic_scalar;
|
||||||
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
Vector2f ctrl_pos = Vector2f(roll_cyclic, pitch_cyclic);
|
||||||
@ -306,7 +300,7 @@ void Helicopter::update(const struct sitl_input &input)
|
|||||||
// rotational acceleration, in rad/s/s, in body frame
|
// rotational acceleration, in rad/s/s, in body frame
|
||||||
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
rot_accel.x = _tpp_angle.x * Lb1s + Lv * velocity_air_bf.y;
|
||||||
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
rot_accel.y = _tpp_angle.y * Ma1s + Mu * velocity_air_bf.x;
|
||||||
rot_accel.z = right_thruster_torque + left_thruster_torque + torque_effect_accel;
|
rot_accel.z = right_thruster_torque + left_thruster_torque - torque_effect_accel;
|
||||||
|
|
||||||
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
lateral_y_thrust = GRAVITY_MSS * _tpp_angle.x + Yv * velocity_air_bf.y;
|
||||||
lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
lateral_x_thrust = (right_thruster_force + left_thruster_force) / mass - GRAVITY_MSS * _tpp_angle.y + Xu * velocity_air_bf.x;
|
||||||
@ -365,27 +359,75 @@ void Helicopter::update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector
|
|||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float Helicopter::update_rpm(bool interlock, float dt)
|
float Helicopter::update_rpm(float curr_rpm, float throttle, float &engine_torque, float collective, float dt)
|
||||||
{
|
{
|
||||||
static float rotor_runup_output;
|
static float rotor_runup_output;
|
||||||
|
static uint8_t motor_status;
|
||||||
|
|
||||||
|
if (throttle > 0.25) {
|
||||||
|
motor_status = 3; // throttle unlimited
|
||||||
|
} else if (motor_status == 3 && throttle <= 0.25 && throttle > 0.15) {
|
||||||
|
motor_status = 2; // autorotational window
|
||||||
|
} else if (throttle <= 0.15) {
|
||||||
|
motor_status = 1; // idle
|
||||||
|
}
|
||||||
|
|
||||||
float runup_time = 8.0f;
|
float runup_time = 8.0f;
|
||||||
|
if (motor_status == 2) {
|
||||||
|
runup_time = 2.0f;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
float accel_scale = 100.0f;
|
||||||
|
|
||||||
// ramp speed estimate towards control out
|
// ramp speed estimate towards control out
|
||||||
float runup_increment = dt / runup_time;
|
float runup_increment = dt / runup_time;
|
||||||
if (interlock) {
|
if (motor_status > 2) {
|
||||||
if (rotor_runup_output < 1.0f) {
|
if (rotor_runup_output < 1.0f) {
|
||||||
rotor_runup_output += runup_increment;
|
rotor_runup_output += runup_increment;
|
||||||
} else {
|
} else {
|
||||||
rotor_runup_output = 1.0f;
|
rotor_runup_output = 1.0f;
|
||||||
}
|
}
|
||||||
|
if (curr_rpm < nominal_rpm - 25.0f) {
|
||||||
|
accel_scale = 2000.0f / runup_time;
|
||||||
|
}
|
||||||
}else{
|
}else{
|
||||||
if (rotor_runup_output > 0.0f) {
|
if (rotor_runup_output > 0.0f) {
|
||||||
rotor_runup_output -= runup_increment;
|
rotor_runup_output -= runup_increment * 10.0f; // make ramp down 10 times faster
|
||||||
} else {
|
} else {
|
||||||
rotor_runup_output = 0.0f;
|
rotor_runup_output = 0.0f;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
return nominal_rpm * constrain_float(rotor_runup_output,0.0f,1.0f);
|
float input_torque = 0.0f;
|
||||||
|
// calculate engine torque just for start up and shutdown of rotor
|
||||||
|
engine_torque = accel_scale * rotor_runup_output * torque_mpog * sq(nominal_rpm * 2.0f * M_PI / 60.0f) / izz;
|
||||||
|
// Calculate autorotation effect on rotor
|
||||||
|
float auto_ss_torque = accel_scale * sq(nominal_rpm * 0.104667f) * torque_mpog / izz;
|
||||||
|
float descent_torque = (velocity_air_bf.z - 7.0) * auto_ss_torque / 7.0f + auto_ss_torque;
|
||||||
|
|
||||||
|
// manage input torque so descent torque combined with engine torque doesn't allow rotor to overspeed
|
||||||
|
if (rotor_runup_output >= 1.0f && curr_rpm > nominal_rpm - 25.0f) {
|
||||||
|
input_torque = engine_torque;
|
||||||
|
} else if (rotor_runup_output <= 0.0f) {
|
||||||
|
input_torque = descent_torque;
|
||||||
|
} else {
|
||||||
|
input_torque = engine_torque + descent_torque;
|
||||||
|
}
|
||||||
|
float rpm_dot = 0.0f;
|
||||||
|
if (rotor_runup_output <= 0.0f && curr_rpm < 300) {
|
||||||
|
rpm_dot = - 40.0f;
|
||||||
|
if (curr_rpm <= 0.0f) {
|
||||||
|
return 0.0f;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
rpm_dot = input_torque - (sq(curr_rpm * 0.104667f) * (accel_scale * torque_mpog )) / izz;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Calculate main rotor torque effect on body to include thrust effects to determine tail rotor thrust
|
||||||
|
engine_torque = sq(nominal_rpm * 0.104667f) * rotor_runup_output * (torque_mpog + torque_scale * fabsf(collective)) / izz;
|
||||||
|
|
||||||
|
return curr_rpm + rpm_dot * dt;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -40,7 +40,7 @@ public:
|
|||||||
protected:
|
protected:
|
||||||
|
|
||||||
void update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt);
|
void update_rotor_dynamics(Vector3f gyros, Vector2f ctrl_pos, Vector2f &tpp_angle, float dt);
|
||||||
float update_rpm(bool interlock, float dt);
|
float update_rpm(float curr_rpm, float throttle, float &engine_torque, float collective, float dt);
|
||||||
|
|
||||||
// buffers to provide time delay
|
// buffers to provide time delay
|
||||||
struct servos_stored {
|
struct servos_stored {
|
||||||
|
Loading…
Reference in New Issue
Block a user