Ardupilot2/libraries/AP_Proximity/AP_Proximity_Backend.cpp

129 lines
4.5 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_Common/AP_Common.h>
#include <AP_Common/Location.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AC_Avoidance/AP_OADatabase.h>
#include <AP_HAL/AP_HAL.h>
#include "AP_Proximity.h"
#include "AP_Proximity_Backend.h"
/*
base class constructor.
This incorporates initialisation as well.
*/
AP_Proximity_Backend::AP_Proximity_Backend(AP_Proximity &_frontend, AP_Proximity::Proximity_State &_state) :
frontend(_frontend),
state(_state)
{
}
// get distances in PROXIMITY_MAX_DIRECTION directions horizontally. used for sending distances to ground station
bool AP_Proximity_Backend::get_horizontal_distances(AP_Proximity::Proximity_Distance_Array &prx_dist_array) const
{
// cycle through all sectors filling in distances and orientations
// see MAV_SENSOR_ORIENTATION for orientations (0 = forward, 1 = 45 degree clockwise from north, etc)
bool valid_distances = false;
for (uint8_t i=0; i<PROXIMITY_MAX_DIRECTION; i++) {
prx_dist_array.orientation[i] = i;
const AP_Proximity_Boundary_3D::Face face(PROXIMITY_MIDDLE_LAYER, i);
if (boundary.get_distance(face, prx_dist_array.distance[i])) {
valid_distances = true;
} else {
prx_dist_array.distance[i] = distance_max();
}
}
return valid_distances;
}
// set status and update valid count
void AP_Proximity_Backend::set_status(AP_Proximity::Status status)
{
state.status = status;
}
// correct an angle (in degrees) based on the orientation and yaw correction parameters
float AP_Proximity_Backend::correct_angle_for_orientation(float angle_degrees) const
{
const float angle_sign = (frontend.get_orientation(state.instance) == 1) ? -1.0f : 1.0f;
return wrap_360(angle_degrees * angle_sign + frontend.get_yaw_correction(state.instance));
}
// check if a reading should be ignored because it falls into an ignore area
bool AP_Proximity_Backend::ignore_reading(uint16_t angle_deg) const
{
// check angle vs each ignore area
for (uint8_t i=0; i < PROXIMITY_MAX_IGNORE; i++) {
if (frontend._ignore_width_deg[i] != 0) {
if (abs(angle_deg - frontend._ignore_angle_deg[i]) <= (frontend._ignore_width_deg[i]/2)) {
return true;
}
}
}
return false;
}
// returns true if database is ready to be pushed to and all cached data is ready
2020-06-08 04:01:01 -03:00
bool AP_Proximity_Backend::database_prepare_for_push(Vector3f &current_pos, Matrix3f &body_to_ned)
{
AP_OADatabase *oaDb = AP::oadatabase();
if (oaDb == nullptr || !oaDb->healthy()) {
return false;
}
2020-06-08 04:01:01 -03:00
if (!AP::ahrs().get_relative_position_NED_origin(current_pos)) {
return false;
}
2020-06-08 04:01:01 -03:00
body_to_ned = AP::ahrs().get_rotation_body_to_ned();
return true;
}
// update Object Avoidance database with Earth-frame point
void AP_Proximity_Backend::database_push(float angle, float distance)
{
2020-06-08 04:01:01 -03:00
Vector3f current_pos;
Matrix3f body_to_ned;
if (database_prepare_for_push(current_pos, body_to_ned)) {
database_push(angle, distance, AP_HAL::millis(), current_pos, body_to_ned);
}
}
// update Object Avoidance database with Earth-frame point
// pitch can be optionally provided if needed
void AP_Proximity_Backend::database_push(float angle, float pitch, float distance, uint32_t timestamp_ms, const Vector3f &current_pos, const Matrix3f &body_to_ned)
{
AP_OADatabase *oaDb = AP::oadatabase();
if (oaDb == nullptr || !oaDb->healthy()) {
return;
}
2021-02-11 03:36:58 -04:00
//Assume object is angle and pitch bearing and distance meters away from the vehicle
Vector3f object_3D;
2021-02-11 03:36:58 -04:00
object_3D.offset_bearing(wrap_180(angle), wrap_180(pitch * -1.0f), distance);
2020-06-08 04:01:01 -03:00
const Vector3f rotated_object_3D = body_to_ned * object_3D;
2021-02-11 03:36:58 -04:00
2020-06-08 04:01:01 -03:00
//Calculate the position vector from origin
Vector3f temp_pos = current_pos + rotated_object_3D;
//Convert the vector to a NEU frame from NED
temp_pos.z = temp_pos.z * -1.0f;
2021-02-11 03:36:58 -04:00
oaDb->queue_push(temp_pos, timestamp_ms, distance);
}