Ardupilot2/libraries/AP_OpticalFlow/AP_OpticalFlow.cpp

113 lines
3.9 KiB
C++
Raw Normal View History

/*
ADC.cpp - Analog Digital Converter Base Class for Ardupilot Mega
Code by James Goppert. DIYDrones.com
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
*/
#include "AP_OpticalFlow.h"
#define FORTYFIVE_DEGREES 0.78539816
AP_OpticalFlow::AP_OpticalFlow() : raw_dx(0),raw_dy(0),x(0),y(0),surface_quality(0),dx(0),dy(0),last_update(0),field_of_view(1),scaler(0),num_pixels(0)
{
}
// init - initCommAPI parameter controls whether I2C/SPI interface is initialised (set to false if other devices are on the I2C/SPI bus and have already initialised the interface)
bool
AP_OpticalFlow::init(bool initCommAPI)
{
_orientation_matrix = Matrix3f(1,0,0,0,1,0,0,0,1);
update_conversion_factors();
return true; // just return true by default
}
// set_orientation - Rotation vector to transform sensor readings to the body frame.
void
AP_OpticalFlow::set_orientation(const Matrix3f &rotation_matrix)
{
_orientation_matrix = rotation_matrix;
}
// read latest values from sensor and fill in x,y and totals
int AP_OpticalFlow::read()
{
}
// reads a value from the sensor (will be sensor specific)
byte
AP_OpticalFlow::read_register(byte address)
{
}
// writes a value to one of the sensor's register (will be sensor specific)
void
AP_OpticalFlow::write_register(byte address, byte value)
{
}
// rotate raw values to arrive at final x,y,dx and dy values
void
AP_OpticalFlow::apply_orientation_matrix()
{
Vector3f rot_vector;
// next rotate dx and dy
rot_vector = _orientation_matrix * Vector3f(raw_dx,raw_dy,0);
dx = rot_vector.x;
dy = rot_vector.y;
// add rotated values to totals (perhaps this is pointless as we need to take into account yaw, roll, pitch)
x += dx;
y += dy;
}
// updatse conversion factors that are dependent upon field_of_view
void
AP_OpticalFlow::update_conversion_factors()
{
conv_factor = (1.0/(float)(num_pixels*scaler))*2.0*tan(field_of_view/2.0); // multiply this number by altitude and pixel change to get horizontal move (in same units as altitude)
radians_to_pixels = (num_pixels*scaler) / field_of_view;
}
// updates internal lon and lat with estimation based on optical flow
void
AP_OpticalFlow::get_position(float roll, float pitch, float yaw, float altitude)
{
float diff_roll = roll - _last_roll;
float diff_pitch = pitch - _last_pitch;
float avg_altitude = (altitude + _last_altitude)/2;
//float exp_change_x, exp_change_y;
//float change_x, change_y;
//float x_cm, y_cm;
float cos_yaw = cos(yaw);
float sin_yaw = sin(yaw);
int i;
// only update position if surface quality is good and angle is not over 45 degrees
if( surface_quality >= 10 && fabs(roll) <= FORTYFIVE_DEGREES && fabs(pitch) <= FORTYFIVE_DEGREES ) {
// calculate expected x,y diff due to roll and pitch change
exp_change_x = diff_roll * radians_to_pixels;
exp_change_y = -diff_pitch * radians_to_pixels;
// real estimated raw change from mouse
change_x = dx - exp_change_x;
change_y = dy - exp_change_y;
// convert raw change to horizontal movement in cm
x_cm = -change_x * avg_altitude * conv_factor; // perhaps this altitude should actually be the distance to the ground? i.e. if we are very rolled over it should be longer?
y_cm = -change_y * avg_altitude * conv_factor; // for example if you are leaned over at 45 deg the ground will appear farther away and motion from opt flow sensor will be less
// use yaw to convert x and y into lon and lat
lat += y_cm * cos_yaw - x_cm * sin_yaw;
lng += x_cm * cos_yaw + y_cm * sin_yaw;
}
// capture roll and pitch for next iteration
_last_roll = roll;
_last_pitch = pitch;
_last_altitude = altitude;
}