Ardupilot2/libraries/AP_HAL_ChibiOS/Scheduler.cpp

442 lines
12 KiB
C++
Raw Normal View History

/*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Code by Andrew Tridgell and Siddharth Bharat Purohit
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include "AP_HAL_ChibiOS.h"
#include "Scheduler.h"
#include "Util.h"
#include <AP_HAL_ChibiOS/UARTDriver.h>
#include <AP_HAL_ChibiOS/AnalogIn.h>
#include <AP_HAL_ChibiOS/Storage.h>
#include <AP_HAL_ChibiOS/RCOutput.h>
#include <AP_HAL_ChibiOS/RCInput.h>
2018-02-01 15:21:18 -04:00
#include <AP_HAL_ChibiOS/CAN.h>
#include <AP_Scheduler/AP_Scheduler.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include "shared_dma.h"
using namespace ChibiOS;
extern const AP_HAL::HAL& hal;
THD_WORKING_AREA(_timer_thread_wa, 2048);
THD_WORKING_AREA(_rcin_thread_wa, 512);
#ifdef HAL_PWM_ALARM
THD_WORKING_AREA(_toneAlarm_thread_wa, 512);
#endif
THD_WORKING_AREA(_io_thread_wa, 2048);
THD_WORKING_AREA(_storage_thread_wa, 2048);
2018-02-02 06:17:58 -04:00
#if HAL_WITH_UAVCAN
THD_WORKING_AREA(_uavcan_thread_wa, 4096);
2018-02-01 15:21:18 -04:00
#endif
Scheduler::Scheduler()
{}
void Scheduler::init()
{
chVTObjectInit(&_boost_timer);
// setup the timer thread - this will call tasks at 1kHz
_timer_thread_ctx = chThdCreateStatic(_timer_thread_wa,
sizeof(_timer_thread_wa),
APM_TIMER_PRIORITY, /* Initial priority. */
_timer_thread, /* Thread function. */
this); /* Thread parameter. */
// setup the uavcan thread - this will call tasks at 1kHz
2018-02-02 06:17:58 -04:00
#if HAL_WITH_UAVCAN
2018-02-01 15:21:18 -04:00
_uavcan_thread_ctx = chThdCreateStatic(_uavcan_thread_wa,
sizeof(_uavcan_thread_wa),
APM_UAVCAN_PRIORITY, /* Initial priority. */
_uavcan_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
// setup the RCIN thread - this will call tasks at 1kHz
_rcin_thread_ctx = chThdCreateStatic(_rcin_thread_wa,
sizeof(_rcin_thread_wa),
APM_RCIN_PRIORITY, /* Initial priority. */
_rcin_thread, /* Thread function. */
this); /* Thread parameter. */
// the toneAlarm thread runs at a medium priority
#ifdef HAL_PWM_ALARM
_toneAlarm_thread_ctx = chThdCreateStatic(_toneAlarm_thread_wa,
sizeof(_toneAlarm_thread_wa),
APM_TONEALARM_PRIORITY, /* Initial priority. */
_toneAlarm_thread, /* Thread function. */
this); /* Thread parameter. */
#endif
// the IO thread runs at lower priority
_io_thread_ctx = chThdCreateStatic(_io_thread_wa,
sizeof(_io_thread_wa),
APM_IO_PRIORITY, /* Initial priority. */
_io_thread, /* Thread function. */
this); /* Thread parameter. */
// the storage thread runs at just above IO priority
_storage_thread_ctx = chThdCreateStatic(_storage_thread_wa,
sizeof(_storage_thread_wa),
APM_STORAGE_PRIORITY, /* Initial priority. */
_storage_thread, /* Thread function. */
this); /* Thread parameter. */
}
void Scheduler::delay_microseconds(uint16_t usec)
{
if (usec == 0) { //chibios faults with 0us sleep
return;
}
uint32_t ticks;
if (usec >= 4096) {
// we need to use 64 bit calculations for tick conversions
ticks = US2ST64(usec);
} else {
ticks = US2ST(usec);
}
if (ticks == 0) {
// calling with ticks == 0 causes a hard fault on ChibiOS
ticks = 1;
}
chThdSleep(ticks); //Suspends Thread for desired microseconds
}
/*
wrapper around sem_post that boosts main thread priority
*/
static void set_high_priority()
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
hal_chibios_set_priority(APM_MAIN_PRIORITY_BOOST);
#endif
}
/*
return the main thread to normal priority
*/
static void set_normal_priority(void *ctx)
{
#if APM_MAIN_PRIORITY_BOOST != APM_MAIN_PRIORITY
thread_t *task = (thread_t *)ctx;
// we don't need a reschedule as that happens automatically on ISR exit
task->realprio = APM_MAIN_PRIORITY;
#endif
}
/*
a variant of delay_microseconds that boosts priority to
APM_MAIN_PRIORITY_BOOST for APM_MAIN_PRIORITY_BOOST_USEC
microseconds when the time completes. This significantly improves
the regularity of timing of the main loop
*/
void Scheduler::delay_microseconds_boost(uint16_t usec)
{
set_high_priority();
delay_microseconds(usec); //Suspends Thread for desired microseconds
chVTSet(&_boost_timer, US2ST(200), set_normal_priority, chThdGetSelfX());
_called_boost = true;
}
/*
return true if delay_microseconds_boost() has been called since last check
*/
bool Scheduler::check_called_boost(void)
{
if (!_called_boost) {
return false;
}
_called_boost = false;
return true;
}
void Scheduler::delay(uint16_t ms)
{
if (!in_main_thread()) {
//chprintf("ERROR: delay() from timer process\n");
return;
}
uint64_t start = AP_HAL::micros64();
while ((AP_HAL::micros64() - start)/1000 < ms) {
delay_microseconds(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
}
void Scheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void Scheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void Scheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < CHIBIOS_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void Scheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void Scheduler::suspend_timer_procs()
{
_timer_suspended = true;
}
void Scheduler::resume_timer_procs()
{
_timer_suspended = false;
if (_timer_event_missed == true) {
_run_timers(false);
_timer_event_missed = false;
}
}
extern void Reset_Handler();
void Scheduler::reboot(bool hold_in_bootloader)
{
// disarm motors to ensure they are off during a bootloader upload
hal.rcout->force_safety_on();
hal.rcout->force_safety_no_wait();
// lock all shared DMA channels. This has the effect of waiting
// till the sensor buses are idle
Shared_DMA::lock_all();
// delay to ensure the async force_saftey operation completes
delay(500);
// disable interrupts during reboot
chSysDisable();
// reboot
NVIC_SystemReset();
}
void Scheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i]) {
_timer_proc[i]();
}
}
} else if (called_from_timer_thread) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != nullptr) {
_failsafe();
}
// process analog input
((AnalogIn *)hal.analogin)->_timer_tick();
_in_timer_proc = false;
}
void Scheduler::_timer_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
sched->_timer_thread_ctx->name = "apm_timer";
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered timers
sched->_run_timers(true);
// process any pending RC output requests
hal.rcout->timer_tick();
}
}
2018-02-01 15:21:18 -04:00
#if HAL_WITH_UAVCAN
void Scheduler::_uavcan_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
2018-02-27 20:04:10 -04:00
sched->_uavcan_thread_ctx->name = "apm_uavcan";
2018-02-01 15:21:18 -04:00
while (!sched->_hal_initialized) {
sched->delay_microseconds(20000);
}
while (true) {
sched->delay_microseconds(1000);
for (int i = 0; i < MAX_NUMBER_OF_CAN_INTERFACES; i++) {
if(hal.can_mgr[i] != nullptr) {
CANManager::from(hal.can_mgr[i])->_timer_tick();
}
}
}
}
#endif
void Scheduler::_rcin_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
sched->_rcin_thread_ctx->name = "apm_rcin";
while (!sched->_hal_initialized) {
sched->delay_microseconds(20000);
}
while (true) {
sched->delay_microseconds(2500);
((RCInput *)hal.rcin)->_timer_tick();
}
}
#ifdef HAL_PWM_ALARM
void Scheduler::_toneAlarm_thread(void *arg)
{
Scheduler *sched = (Scheduler *)arg;
sched->_toneAlarm_thread_ctx->name = "toneAlarm";
while (!sched->_hal_initialized) {
sched->delay_microseconds(20000);
}
while (true) {
sched->delay_microseconds(20000);
// process tone command
Util::from(hal.util)->_toneAlarm_timer_tick();
}
}
#endif
void Scheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i]) {
_io_proc[i]();
}
}
}
_in_io_proc = false;
}
void Scheduler::_io_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
sched->_io_thread_ctx->name = "apm_io";
while (!sched->_hal_initialized) {
sched->delay_microseconds(1000);
}
while (true) {
sched->delay_microseconds(1000);
// run registered IO processes
sched->_run_io();
}
}
void Scheduler::_storage_thread(void* arg)
{
Scheduler *sched = (Scheduler *)arg;
sched->_storage_thread_ctx->name = "apm_storage";
while (!sched->_hal_initialized) {
sched->delay_microseconds(10000);
}
while (true) {
sched->delay_microseconds(10000);
// process any pending storage writes
hal.storage->_timer_tick();
}
}
bool Scheduler::in_main_thread() const
{
return get_main_thread() == chThdGetSelfX();
}
void Scheduler::system_initialized()
{
if (_initialized) {
AP_HAL::panic("PANIC: scheduler::system_initialized called"
"more than once");
}
_initialized = true;
}
/*
disable interrupts and return a context that can be used to
restore the interrupt state. This can be used to protect
critical regions
*/
void *Scheduler::disable_interrupts_save(void)
{
return (void *)(uintptr_t)chSysGetStatusAndLockX();
}
/*
restore interrupt state from disable_interrupts_save()
*/
void Scheduler::restore_interrupts(void *state)
{
chSysRestoreStatusX((syssts_t)(uintptr_t)state);
}
#endif