Ardupilot2/libraries/AP_NavEKF/Models/GimbalEstimatorExample/AlignHeading.m

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

51 lines
1.7 KiB
Mathematica
Raw Normal View History

function quat = AlignHeading( ...
gPhi, ... % gimbal roll angle
gPsi, ... % gimbal yaw angle
gTheta, ... % gimbal pitch angle
Tsn, ... % sensor to NED rotation matrix
magMea, ... % body frame magnetic flux measurements
quat, ... % quaternion defining rotation from sensor to NED axes
declination) % Estimated magnetic field delination at current location
% calculate rotation from magnetometer to NED axes
Tmn = calcTmn(gPhi,gPsi,gTheta,quat(1),quat(2),quat(3),quat(4));
% Calculate the predicted magnetic declination
magMeasNED = Tmn*magMea;
predDec = atan2(magMeasNED(2),magMeasNED(1));
% Calculate the measurement innovation
innovation = predDec - declination;
if (innovation > pi)
innovation = innovation - 2*pi;
elseif (innovation < -pi)
innovation = innovation + 2*pi;
end
% form the NED rotation vector
deltaRotNED = -[0;0;innovation];
% rotate into sensor axes
deltaRotBody = transpose(Tsn)*deltaRotNED;
% Convert the error rotation vector to its equivalent quaternion
% error = truth - estimate
rotationMag = abs(innovation);
if rotationMag<1e-6
deltaQuat = single([1;0;0;0]);
else
deltaQuat = [cos(0.5*rotationMag); [deltaRotBody(1);deltaRotBody(2);deltaRotBody(3)]/rotationMag*sin(0.5*rotationMag)];
end
% Update the quaternion states by rotating from the previous attitude through
% the delta angle rotation quaternion
quat = [quat(1)*deltaQuat(1)-transpose(quat(2:4))*deltaQuat(2:4); quat(1)*deltaQuat(2:4) + deltaQuat(1)*quat(2:4) + cross(quat(2:4),deltaQuat(2:4))];
% normalise the updated quaternion states
quatMag = sqrt(quat(1)^2 + quat(2)^2 + quat(3)^2 + quat(4)^2);
if (quatMag > 1e-12)
quat = quat / quatMag;
end
end