Ardupilot2/libraries/AP_HAL_SITL/CANSocketIface.cpp

350 lines
8.9 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* Many thanks to members of the UAVCAN project:
* Pavel Kirienko <pavel.kirienko@gmail.com>
* Ilia Sheremet <illia.sheremet@gmail.com>
*
* license info can be found in the uavcan submodule located:
* modules/uavcan/libuavcan_drivers/linux/include/uavcan_linux/socketcan.hpp
*/
#include <AP_HAL/AP_HAL.h>
#include <AP_HAL/system.h>
#if HAL_NUM_CAN_IFACES
#include "CANSocketIface.h"
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <cstring>
#include "Scheduler.h"
#include <AP_CANManager/AP_CANManager.h>
2020-12-30 02:23:27 -04:00
#include <AP_Common/ExpandingString.h>
#include "CAN_Multicast.h"
#include "CAN_SocketCAN.h"
2020-12-30 02:23:27 -04:00
extern const AP_HAL::HAL& hal;
using namespace HALSITL;
#if HAL_CANMANAGER_ENABLED
#define Debug(fmt, args...) do { AP::can().log_text(AP_CANManager::LOG_DEBUG, "CANSITLIface", fmt, ##args); } while (0)
#else
#define Debug(fmt, args...)
#endif
CANIface::CANSocketEventSource CANIface::evt_can_socket[HAL_NUM_CAN_IFACES];
uint8_t CANIface::_num_interfaces;
bool CANIface::is_initialized() const
{
return transport != nullptr;
}
int16_t CANIface::send(const AP_HAL::CANFrame& frame, const uint64_t tx_deadline,
const CANIface::CanIOFlags flags)
{
WITH_SEMAPHORE(sem);
CanTxItem tx_item {};
tx_item.frame = frame;
if (flags & Loopback) {
tx_item.loopback = true;
}
if (flags & AbortOnError) {
tx_item.abort_on_error = true;
}
tx_item.setup = true;
tx_item.index = _tx_frame_counter;
tx_item.deadline = tx_deadline;
_tx_queue.emplace(tx_item);
_tx_frame_counter++;
stats.tx_requests++;
_pollRead(); // Read poll is necessary because it can release the pending TX flag
_pollWrite();
return AP_HAL::CANIface::send(frame, tx_deadline, flags);
}
int16_t CANIface::receive(AP_HAL::CANFrame& out_frame, uint64_t& out_timestamp_us,
CANIface::CanIOFlags& out_flags)
{
WITH_SEMAPHORE(sem);
if (_rx_queue.empty()) {
_pollRead(); // This allows to use the socket not calling poll() explicitly.
if (_rx_queue.empty()) {
return 0;
}
}
{
const CanRxItem& rx = _rx_queue.front();
out_frame = rx.frame;
out_timestamp_us = rx.timestamp_us;
out_flags = rx.flags;
}
(void)_rx_queue.pop();
return AP_HAL::CANIface::receive(out_frame, out_timestamp_us, out_flags);
}
bool CANIface::_hasReadyTx()
{
WITH_SEMAPHORE(sem);
return !_tx_queue.empty();
}
bool CANIface::_hasReadyRx()
{
WITH_SEMAPHORE(sem);
return !_rx_queue.empty();
}
void CANIface::_poll(bool read, bool write)
{
if (read) {
_pollRead(); // Read poll must be executed first because it may decrement _frames_in_socket_tx_queue
}
if (write) {
_pollWrite();
}
}
uint32_t CANIface::getErrorCount() const
{
return 0;
}
void CANIface::_pollWrite()
{
if (transport == nullptr) {
return;
}
while (_hasReadyTx()) {
WITH_SEMAPHORE(sem);
const CanTxItem tx = _tx_queue.top();
const uint64_t curr_time = AP_HAL::micros64();
if (tx.deadline >= curr_time) {
// hal.console->printf("%x TDEAD: %lu CURRT: %lu DEL: %lu\n",tx.frame.id, tx.deadline, curr_time, tx.deadline-curr_time);
bool ok = transport->send(tx.frame);
if (ok) {
stats.tx_success++;
stats.last_transmit_us = curr_time;
} else {
break;
}
} else {
stats.tx_timedout++;
}
// Removing the frame from the queue
(void)_tx_queue.pop();
}
}
bool CANIface::_pollRead()
{
if (transport == nullptr) {
return false;
}
CanRxItem rx {};
bool ok = transport->receive(rx.frame);
if (!ok) {
return false;
}
rx.timestamp_us = AP_HAL::micros64();
WITH_SEMAPHORE(sem);
add_to_rx_queue(rx);
stats.rx_received++;
return true;
}
// Might block forever, only to be used for testing
void CANIface::flush_tx()
{
WITH_SEMAPHORE(sem);
do {
_poll(true, true);
} while(!_tx_queue.empty());
}
void CANIface::clear_rx()
{
WITH_SEMAPHORE(sem);
// Clean Rx Queue
std::queue<CanRxItem> empty;
std::swap( _rx_queue, empty );
}
void CANIface::_confirmSentFrame()
{
if (_frames_in_socket_tx_queue > 0) {
_frames_in_socket_tx_queue--;
}
}
bool CANIface::init(const uint32_t bitrate, const uint32_t fdbitrate, const OperatingMode mode)
{
return init(bitrate, mode);
}
bool CANIface::init(const uint32_t bitrate, const OperatingMode mode)
{
const auto *_sitl = AP::sitl();
if (_sitl == nullptr) {
return false;
}
if (_self_index >= HAL_NUM_CAN_IFACES) {
return false;
}
const SITL::SIM::CANTransport can_type = _sitl->can_transport[_self_index];
switch (can_type) {
case SITL::SIM::CANTransport::MulticastUDP:
transport = new CAN_Multicast();
break;
case SITL::SIM::CANTransport::SocketCAN:
#if HAL_CAN_WITH_SOCKETCAN
transport = new CAN_SocketCAN();
#endif
break;
}
if (transport == nullptr) {
return false;
}
if (!transport->init(_self_index)) {
delete transport;
transport = nullptr;
return false;
}
return true;
}
bool CANIface::select(bool &read_select, bool &write_select,
const AP_HAL::CANFrame* const pending_tx, uint64_t blocking_deadline)
{
if (transport == nullptr) {
return false;
}
// Detecting whether we need to block at all
bool need_block = !write_select; // Write queue is infinite
// call poll here to flush some tx
_poll(true, true);
if (read_select && _hasReadyRx()) {
need_block = false;
}
if (need_block) {
_pollfd.fd = transport->get_read_fd();
_pollfd.events |= POLLIN;
}
if (_evt_handle != nullptr && blocking_deadline > AP_HAL::micros64()) {
_evt_handle->wait(blocking_deadline - AP_HAL::micros64());
}
// Writing the output masks
write_select = true;
read_select = _hasReadyRx();
return true;
}
bool CANIface::set_event_handle(AP_HAL::EventHandle* handle)
{
_evt_handle = handle;
evt_can_socket[_self_index]._ifaces[_self_index] = this;
_evt_handle->set_source(&evt_can_socket[_self_index]);
return true;
}
bool CANIface::CANSocketEventSource::wait(uint16_t duration_us, AP_HAL::EventHandle* evt_handle)
{
if (evt_handle == nullptr) {
return false;
}
pollfd pollfds[HAL_NUM_CAN_IFACES] {};
uint8_t pollfd_iface_map[HAL_NUM_CAN_IFACES] {};
unsigned long int num_pollfds = 0;
// Poll FD set setup
for (unsigned i = 0; i < HAL_NUM_CAN_IFACES; i++) {
if (_ifaces[i] == nullptr) {
continue;
}
pollfds[num_pollfds] = _ifaces[i]->_pollfd;
pollfd_iface_map[num_pollfds] = i;
num_pollfds++;
}
if (num_pollfds == 0) {
return true;
}
const uint32_t start_us = AP_HAL::micros();
do {
uint16_t wait_us = MIN(100, duration_us);
// check FD for input
const int res = poll(pollfds, num_pollfds, wait_us/1000U);
if (res < 0) {
return false;
}
if (res > 0) {
break;
}
// ensure simulator runs
hal.scheduler->delay_microseconds(wait_us);
} while (AP_HAL::micros() - start_us < duration_us);
// Handling poll output
for (unsigned i = 0; i < num_pollfds; i++) {
if (_ifaces[pollfd_iface_map[i]] == nullptr) {
continue;
}
const bool poll_read = pollfds[i].revents & POLLIN;
const bool poll_write = pollfds[i].revents & POLLOUT;
_ifaces[pollfd_iface_map[i]]->_poll(poll_read, poll_write);
}
return true;
}
2020-12-30 02:23:27 -04:00
void CANIface::get_stats(ExpandingString &str)
{
2020-12-30 02:23:27 -04:00
str.printf("tx_requests: %u\n"
"tx_rejected: %u\n"
2020-12-30 02:23:27 -04:00
"tx_success: %u\n"
"tx_timedout: %u\n"
"rx_received: %u\n"
"rx_errors: %u\n",
2020-12-30 02:23:27 -04:00
stats.tx_requests,
stats.tx_rejected,
2020-12-30 02:23:27 -04:00
stats.tx_success,
stats.tx_timedout,
stats.rx_received,
stats.rx_errors);
}
#endif