Ardupilot2/libraries/AP_VisualOdom/AP_VisualOdom_MAV.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

82 lines
3.0 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_VisualOdom_config.h"
#if AP_VISUALODOM_MAV_ENABLED
#include "AP_VisualOdom_MAV.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_AHRS/AP_AHRS.h>
#include <AP_Logger/AP_Logger.h>
// consume vision pose estimate data and send to EKF. distances in meters
2024-02-20 03:08:30 -04:00
// quality of -1 means failed, 0 means unknown, 1 is worst, 100 is best
void AP_VisualOdom_MAV::handle_pose_estimate(uint64_t remote_time_us, uint32_t time_ms, float x, float y, float z, const Quaternion &attitude, float posErr, float angErr, uint8_t reset_counter, int8_t quality)
{
const float scale_factor = _frontend.get_pos_scale();
Vector3f pos{x * scale_factor, y * scale_factor, z * scale_factor};
posErr = constrain_float(posErr, _frontend.get_pos_noise(), 100.0f);
angErr = constrain_float(angErr, _frontend.get_yaw_noise(), 1.5f);
2024-02-20 03:08:30 -04:00
// record quality
_quality = quality;
// send attitude and position to EKF if quality OK
bool consume = (_quality >= _frontend.get_quality_min());
if (consume) {
AP::ahrs().writeExtNavData(pos, attitude, posErr, angErr, time_ms, _frontend.get_delay_ms(), get_reset_timestamp_ms(reset_counter));
}
// calculate euler orientation for logging
float roll;
float pitch;
float yaw;
attitude.to_euler(roll, pitch, yaw);
#if HAL_LOGGING_ENABLED
// log sensor data
2024-02-20 03:08:30 -04:00
Write_VisualPosition(remote_time_us, time_ms, pos.x, pos.y, pos.z, degrees(roll), degrees(pitch), degrees(yaw), posErr, angErr, reset_counter, !consume, _quality);
#endif
// record time for health monitoring
_last_update_ms = AP_HAL::millis();
}
2024-02-20 03:08:30 -04:00
// consume vision velocity estimate data and send to EKF, velocity in NED meters per second
// quality of -1 means failed, 0 means unknown, 1 is worst, 100 is best
void AP_VisualOdom_MAV::handle_vision_speed_estimate(uint64_t remote_time_us, uint32_t time_ms, const Vector3f &vel, uint8_t reset_counter, int8_t quality)
{
2024-02-20 03:08:30 -04:00
// record quality
_quality = quality;
// send velocity to EKF if quality OK
bool consume = (_quality >= _frontend.get_quality_min());
if (consume) {
AP::ahrs().writeExtNavVelData(vel, _frontend.get_vel_noise(), time_ms, _frontend.get_delay_ms());
}
// record time for health monitoring
_last_update_ms = AP_HAL::millis();
#if HAL_LOGGING_ENABLED
2024-02-20 03:08:30 -04:00
Write_VisualVelocity(remote_time_us, time_ms, vel, reset_counter, !consume, _quality);
#endif
}
#endif // AP_VISUALODOM_MAV_ENABLED