Ardupilot2/libraries/AP_Common/AP_Curve.h

144 lines
3.8 KiB
C
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: t -*-
/// @file AP_Curve.h
/// @brief used to transforms a pwm value to account for the non-linear pwm->thrust values of normal ESC+motors
#ifndef AP_CURVE
#define AP_CURVE
#include <FastSerial.h>
#include <AP_Common.h>
#include <AP_Math.h> // ArduPilot Mega Vector/Matrix math Library
/// @class AP_Curve
template <class T, uint8_t SIZE>
class AP_Curve {
public:
// Constructor
AP_Curve();
// clear - removes all points from the curve
virtual void clear();
// add_point - adds a point to the curve. returns TRUE if successfully added
virtual bool add_point( T x, T y );
// get_y - returns the point on the curve at the given pwm_value (i.e. the new modified pwm_value)
virtual T get_y( T x );
// displays the contents of the curve (for debugging)
virtual void dump_curve();
protected:
uint8_t _num_points; // number of points in the cruve
T _x[SIZE]; // x values of each point on the curve
T _y[SIZE]; // y values of each point on the curve
float _slope[SIZE]; // slope between any two points. i.e. slope[0] is the slope between points 0 and 1
bool _constrained; // if true, first and last points added will constrain the y values returned by get_y function
};
// Typedef for convenience
typedef AP_Curve<int16_t,3> AP_CurveInt16_Size3;
typedef AP_Curve<int16_t,4> AP_CurveInt16_Size4;
typedef AP_Curve<int16_t,5> AP_CurveInt16_Size5;
typedef AP_Curve<uint16_t,3> AP_CurveUInt16_Size3;
typedef AP_Curve<uint16_t,4> AP_CurveUInt16_Size4;
typedef AP_Curve<uint16_t,5> AP_CurveUInt16_Size5;
// Constructor
template <class T, uint8_t SIZE>
AP_Curve<T,SIZE>::AP_Curve() :
_num_points(0)
{
// clear the curve
clear();
};
// clear the curve
template <class T, uint8_t SIZE>
void AP_Curve<T,SIZE>::clear() {
// clear the curve
for( uint8_t i=0; i<SIZE; i++ ) {
_x[i] = 0;
_y[i] = 0;
_slope[i] = 0.0;
}
_num_points = 0;
}
// add_point - adds a point to the curve
template <class T, uint8_t SIZE>
bool AP_Curve<T,SIZE>::add_point( T x, T y )
{
if( _num_points < SIZE ) {
_x[_num_points] = x;
_y[_num_points] = y;
// increment the number of points
_num_points++;
// if we have at least two points calculate the slope
if( _num_points > 1 ) {
_slope[_num_points-2] = (float)(_y[_num_points-1] - _y[_num_points-2]) / (float)(_x[_num_points-1] - _x[_num_points-2]);
_slope[_num_points-1] = _slope[_num_points-2]; // the final slope is for interpolation beyond the end of the curve
}
return true;
}else{
// we do not have room for the new point
return false;
}
}
// get_y - returns the y value on the curve for a given x value
template <class T, uint8_t SIZE>
T AP_Curve<T,SIZE>::get_y( T x )
{
uint8_t i;
T result;
// deal with case where ther is no curve
if( _num_points == 0 ) {
return x;
}
// when x value is lower than the first point's x value, return minimum y value
if( x <= _x[0] ) {
return _y[0];
}
// when x value is higher than the last point's x value, return maximum y value
if( x >= _x[_num_points-1] ) {
return _y[_num_points-1];
}
// deal with the normal case
for( i=0; i<_num_points-1; i++ ) {
if( x >= _x[i] && x <= _x[i+1] ) {
result = _y[i] + (x - _x[i]) * _slope[i];
return result;
}
}
// we should never get here
return x;
}
// displays the contents of the curve (for debugging)
template <class T, uint8_t SIZE>
void AP_Curve<T,SIZE>::dump_curve()
{
Serial.println_P(PSTR("Curve:"));
for( uint8_t i = 0; i<_num_points; i++ ){
Serial.print_P(PSTR("x:"));
Serial.print(_x[i]);
Serial.print_P(PSTR("\ty:"));
Serial.print(_y[i]);
Serial.print_P(PSTR("\tslope:"));
Serial.print(_slope[i],4);
Serial.println();
}
}
#endif // AP_CURVE