Ardupilot2/libraries/AP_HAL_VRBRAIN/Scheduler.cpp

355 lines
8.7 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#include <AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
#include "AP_HAL_VRBRAIN.h"
#include "Scheduler.h"
#include <unistd.h>
#include <stdlib.h>
#include <sched.h>
#include <errno.h>
#include <stdio.h>
#include <drivers/drv_hrt.h>
#include <nuttx/arch.h>
#include <systemlib/systemlib.h>
#include <pthread.h>
#include <poll.h>
#include "UARTDriver.h"
#include "AnalogIn.h"
#include "Storage.h"
#include "RCOutput.h"
#include "RCInput.h"
#include <AP_Scheduler.h>
using namespace VRBRAIN;
extern const AP_HAL::HAL& hal;
extern bool _vrbrain_thread_should_exit;
VRBRAINScheduler::VRBRAINScheduler() :
_perf_timers(perf_alloc(PC_ELAPSED, "APM_timers")),
_perf_io_timers(perf_alloc(PC_ELAPSED, "APM_IO_timers")),
_perf_delay(perf_alloc(PC_ELAPSED, "APM_delay"))
{}
void VRBRAINScheduler::init(void *unused)
{
_main_task_pid = getpid();
// setup the timer thread - this will call tasks at 1kHz
pthread_attr_t thread_attr;
struct sched_param param;
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_TIMER_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_timer_thread_ctx, &thread_attr, (pthread_startroutine_t)&VRBRAIN::VRBRAINScheduler::_timer_thread, this);
// the UART thread runs at a medium priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_UART_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_uart_thread_ctx, &thread_attr, (pthread_startroutine_t)&VRBRAIN::VRBRAINScheduler::_uart_thread, this);
// the IO thread runs at lower priority
pthread_attr_init(&thread_attr);
pthread_attr_setstacksize(&thread_attr, 2048);
param.sched_priority = APM_IO_PRIORITY;
(void)pthread_attr_setschedparam(&thread_attr, &param);
pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
pthread_create(&_io_thread_ctx, &thread_attr, (pthread_startroutine_t)&VRBRAIN::VRBRAINScheduler::_io_thread, this);
}
uint64_t VRBRAINScheduler::micros64()
{
return hrt_absolute_time();
}
uint64_t VRBRAINScheduler::millis64()
{
return micros64() / 1000;
}
uint32_t VRBRAINScheduler::micros()
{
return micros64() & 0xFFFFFFFF;
}
uint32_t VRBRAINScheduler::millis()
{
return millis64() & 0xFFFFFFFF;
}
/**
delay for a specified number of microseconds using a semaphore wait
*/
void VRBRAINScheduler::delay_microseconds_semaphore(uint16_t usec)
{
sem_t wait_semaphore;
struct hrt_call wait_call;
sem_init(&wait_semaphore, 0, 0);
hrt_call_after(&wait_call, usec, (hrt_callout)sem_post, &wait_semaphore);
sem_wait(&wait_semaphore);
}
void VRBRAINScheduler::delay_microseconds(uint16_t usec)
{
perf_begin(_perf_delay);
if (usec >= 500) {
delay_microseconds_semaphore(usec);
perf_end(_perf_delay);
return;
}
uint64_t start = micros64();
uint64_t dt;
while ((dt=(micros64() - start)) < usec) {
up_udelay(usec - dt);
}
perf_end(_perf_delay);
}
void VRBRAINScheduler::delay(uint16_t ms)
{
if (in_timerprocess()) {
::printf("ERROR: delay() from timer process\n");
return;
}
perf_begin(_perf_delay);
uint64_t start = micros64();
while ((micros64() - start)/1000 < ms &&
!_vrbrain_thread_should_exit) {
delay_microseconds_semaphore(1000);
if (_min_delay_cb_ms <= ms) {
if (_delay_cb) {
_delay_cb();
}
}
}
perf_end(_perf_delay);
if (_vrbrain_thread_should_exit) {
exit(1);
}
}
void VRBRAINScheduler::register_delay_callback(AP_HAL::Proc proc,
uint16_t min_time_ms)
{
_delay_cb = proc;
_min_delay_cb_ms = min_time_ms;
}
void VRBRAINScheduler::register_timer_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] == proc) {
return;
}
}
if (_num_timer_procs < VRBRAIN_SCHEDULER_MAX_TIMER_PROCS) {
_timer_proc[_num_timer_procs] = proc;
_num_timer_procs++;
} else {
hal.console->printf("Out of timer processes\n");
}
}
void VRBRAINScheduler::register_io_process(AP_HAL::MemberProc proc)
{
for (uint8_t i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] == proc) {
return;
}
}
if (_num_io_procs < VRBRAIN_SCHEDULER_MAX_TIMER_PROCS) {
_io_proc[_num_io_procs] = proc;
_num_io_procs++;
} else {
hal.console->printf("Out of IO processes\n");
}
}
void VRBRAINScheduler::register_timer_failsafe(AP_HAL::Proc failsafe, uint32_t period_us)
{
_failsafe = failsafe;
}
void VRBRAINScheduler::suspend_timer_procs()
{
_timer_suspended = true;
}
void VRBRAINScheduler::resume_timer_procs()
{
_timer_suspended = false;
if (_timer_event_missed == true) {
_run_timers(false);
_timer_event_missed = false;
}
}
void VRBRAINScheduler::reboot(bool hold_in_bootloader)
{
systemreset(hold_in_bootloader);
}
void VRBRAINScheduler::_run_timers(bool called_from_timer_thread)
{
if (_in_timer_proc) {
return;
}
_in_timer_proc = true;
if (!_timer_suspended) {
// now call the timer based drivers
for (int i = 0; i < _num_timer_procs; i++) {
if (_timer_proc[i] != NULL) {
_timer_proc[i]();
}
}
} else if (called_from_timer_thread) {
_timer_event_missed = true;
}
// and the failsafe, if one is setup
if (_failsafe != NULL) {
_failsafe();
}
// process analog input
((VRBRAINAnalogIn *)hal.analogin)->_timer_tick();
_in_timer_proc = false;
}
extern bool vrbrain_ran_overtime;
void *VRBRAINScheduler::_timer_thread(void)
{
uint32_t last_ran_overtime = 0;
while (!_hal_initialized) {
poll(NULL, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
delay_microseconds_semaphore(1000);
// run registered timers
perf_begin(_perf_timers);
_run_timers(true);
perf_end(_perf_timers);
// process any pending RC output requests
((VRBRAINRCOutput *)hal.rcout)->_timer_tick();
// process any pending RC input requests
((VRBRAINRCInput *)hal.rcin)->_timer_tick();
if (vrbrain_ran_overtime && millis() - last_ran_overtime > 2000) {
last_ran_overtime = millis();
// printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
// hal.console->printf("Overtime in task %d\n", (int)AP_Scheduler::current_task);
}
}
return NULL;
}
void VRBRAINScheduler::_run_io(void)
{
if (_in_io_proc) {
return;
}
_in_io_proc = true;
if (!_timer_suspended) {
// now call the IO based drivers
for (int i = 0; i < _num_io_procs; i++) {
if (_io_proc[i] != NULL) {
_io_proc[i]();
}
}
}
_in_io_proc = false;
}
void *VRBRAINScheduler::_uart_thread(void)
{
while (!_hal_initialized) {
poll(NULL, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
delay_microseconds_semaphore(1000);
// process any pending serial bytes
((VRBRAINUARTDriver *)hal.uartA)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartB)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartC)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartD)->_timer_tick();
((VRBRAINUARTDriver *)hal.uartE)->_timer_tick();
}
return NULL;
}
void *VRBRAINScheduler::_io_thread(void)
{
while (!_hal_initialized) {
poll(NULL, 0, 1);
}
while (!_vrbrain_thread_should_exit) {
poll(NULL, 0, 1);
// process any pending storage writes
((VRBRAINStorage *)hal.storage)->_timer_tick();
// run registered IO processes
perf_begin(_perf_io_timers);
_run_io();
perf_end(_perf_io_timers);
}
return NULL;
}
void VRBRAINScheduler::panic(const prog_char_t *errormsg)
{
write(1, errormsg, strlen(errormsg));
write(1, "\n", 1);
hal.scheduler->delay_microseconds(10000);
_vrbrain_thread_should_exit = true;
exit(1);
}
bool VRBRAINScheduler::in_timerprocess()
{
return getpid() != _main_task_pid;
}
bool VRBRAINScheduler::system_initializing() {
return !_initialized;
}
void VRBRAINScheduler::system_initialized() {
if (_initialized) {
panic(PSTR("PANIC: scheduler::system_initialized called"
"more than once"));
}
_initialized = true;
}
#endif