Ardupilot2/libraries/AP_IOMCU/iofirmware/iofirmware.cpp

534 lines
16 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
IOMCU main firmware
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_CHIBIOS
#include <AP_Math/AP_Math.h>
#include <AP_Math/crc.h>
#include "iofirmware.h"
#include "hal.h"
#include <AP_HAL_ChibiOS/RCInput.h>
#include "analog.h"
extern const AP_HAL::HAL &hal;
//#pragma GCC optimize("Og")
static AP_IOMCU_FW iomcu;
void setup();
void loop();
const AP_HAL::HAL& hal = AP_HAL::get_HAL();
// pending events on the main thread
enum ioevents {
IOEVENT_PWM=1,
};
2018-09-14 07:06:59 -03:00
static uint32_t num_code_read, num_bad_crc, num_write_pkt, num_unknown_pkt;
static uint32_t num_idle_rx, num_dma_complete_rx, num_total_rx, num_rx_error;
static void dma_rx_end_cb(UARTDriver *uart)
{
osalSysLockFromISR();
uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR);
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
dmaStreamDisable(uart->dmatx);
iomcu.process_io_packet();
num_total_rx++;
num_dma_complete_rx = num_total_rx - num_idle_rx;
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M |
2018-09-14 07:06:59 -03:00
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
dmaStreamSetMemory0(uart->dmatx, &iomcu.tx_io_packet);
dmaStreamSetTransactionSize(uart->dmatx, iomcu.tx_io_packet.get_size());
dmaStreamSetMode(uart->dmatx, uart->dmamode | STM32_DMA_CR_DIR_M2P |
2018-09-14 07:06:59 -03:00
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmatx);
uart->usart->CR3 |= USART_CR3_DMAT;
osalSysUnlockFromISR();
}
static void idle_rx_handler(UARTDriver *uart)
{
volatile uint16_t sr = uart->usart->SR;
if (sr & (USART_SR_LBD | USART_SR_ORE | /* overrun error - packet was too big for DMA or DMA was too slow */
2018-09-14 07:06:59 -03:00
USART_SR_NE | /* noise error - we have lost a byte due to noise */
USART_SR_FE |
USART_SR_PE)) { /* framing error - start/stop bit lost or line break */
/* send a line break - this will abort transmission/reception on the other end */
osalSysLockFromISR();
uart->usart->SR = ~USART_SR_LBD;
2018-09-14 07:06:59 -03:00
uart->usart->CR1 |= USART_CR1_SBK;
num_rx_error++;
uart->usart->CR3 &= ~(USART_CR3_DMAT | USART_CR3_DMAR);
(void)uart->usart->SR;
(void)uart->usart->DR;
(void)uart->usart->DR;
dmaStreamDisable(uart->dmarx);
dmaStreamDisable(uart->dmatx);
dmaStreamSetMemory0(uart->dmarx, &iomcu.rx_io_packet);
dmaStreamSetTransactionSize(uart->dmarx, sizeof(iomcu.rx_io_packet));
dmaStreamSetMode(uart->dmarx, uart->dmamode | STM32_DMA_CR_DIR_P2M |
2018-09-14 07:06:59 -03:00
STM32_DMA_CR_MINC | STM32_DMA_CR_TCIE);
dmaStreamEnable(uart->dmarx);
uart->usart->CR3 |= USART_CR3_DMAR;
osalSysUnlockFromISR();
return;
}
2018-09-14 07:06:59 -03:00
if (sr & USART_SR_IDLE) {
dma_rx_end_cb(uart);
num_idle_rx++;
}
}
/*
* UART driver configuration structure.
*/
static UARTConfig uart_cfg = {
2018-09-14 07:06:59 -03:00
nullptr,
nullptr,
dma_rx_end_cb,
nullptr,
nullptr,
idle_rx_handler,
1500000, //1.5MBit
USART_CR1_IDLEIE,
0,
0
};
void setup(void)
{
hal.rcin->init();
hal.rcout->init();
for (uint8_t i = 0; i< 14; i++) {
hal.rcout->enable_ch(i);
}
iomcu.init();
2018-09-14 07:06:59 -03:00
iomcu.calculate_fw_crc();
uartStart(&UARTD2, &uart_cfg);
uartStartReceive(&UARTD2, sizeof(iomcu.rx_io_packet), &iomcu.rx_io_packet);
}
void loop(void)
{
iomcu.update();
}
void AP_IOMCU_FW::init()
{
thread_ctx = chThdGetSelfX();
if (palReadLine(HAL_GPIO_PIN_IO_HW_DETECT1) == 1 && palReadLine(HAL_GPIO_PIN_IO_HW_DETECT2) == 0) {
has_heater = true;
}
adc_init();
}
2018-09-14 07:06:59 -03:00
void AP_IOMCU_FW::update()
{
eventmask_t mask = chEvtWaitAnyTimeout(~0, chTimeMS2I(1));
if (do_reboot && (AP_HAL::millis() > reboot_time)) {
hal.scheduler->reboot(true);
2018-09-14 07:06:59 -03:00
while (true) {}
}
if ((mask & EVENT_MASK(IOEVENT_PWM)) ||
(last_safety_off != reg_status.flag_safety_off)) {
last_safety_off = reg_status.flag_safety_off;
pwm_out_update();
}
// run remaining functions at 1kHz
uint32_t now = AP_HAL::millis();
if (now != last_loop_ms) {
last_loop_ms = now;
heater_update();
rcin_update();
safety_update();
rcout_mode_update();
hal.rcout->timer_tick();
}
}
void AP_IOMCU_FW::pwm_out_update()
{
//TODO: PWM mixing
memcpy(reg_servo.pwm, reg_direct_pwm.pwm, sizeof(reg_direct_pwm));
hal.rcout->cork();
2018-09-14 07:06:59 -03:00
for (uint8_t i = 0; i < SERVO_COUNT; i++) {
if (reg_servo.pwm[i] != 0) {
hal.rcout->write(i, reg_status.flag_safety_off?reg_servo.pwm[i]:0);
}
}
hal.rcout->push();
}
void AP_IOMCU_FW::heater_update()
{
uint32_t now = AP_HAL::millis();
if (!has_heater) {
// use blue LED as heartbeat
if (now - last_blue_led_ms > 500) {
palToggleLine(HAL_GPIO_PIN_HEATER);
last_blue_led_ms = now;
}
} else if (reg_setup.heater_duty_cycle == 0 || (now - last_heater_ms > 3000UL)) {
palWriteLine(HAL_GPIO_PIN_HEATER, 0);
2018-09-14 07:06:59 -03:00
} else {
uint8_t cycle = ((now / 10UL) % 100U);
palWriteLine(HAL_GPIO_PIN_HEATER, !(cycle >= reg_setup.heater_duty_cycle));
2018-09-14 07:06:59 -03:00
}
}
void AP_IOMCU_FW::rcin_update()
{
((ChibiOS::RCInput *)hal.rcin)->_timer_tick();
2018-10-05 22:04:13 -03:00
uint32_t now = AP_HAL::micros();
if (hal.rcin->new_input()) {
rc_input.count = hal.rcin->num_channels();
rc_input.flags_rc_ok = true;
for (uint8_t i = 0; i < IOMCU_MAX_CHANNELS; i++) {
rc_input.pwm[i] = hal.rcin->read(i);
}
2018-10-05 22:04:13 -03:00
rc_input.last_input_us = now;
} else if (now - rc_input.last_input_us > 200000U) {
rc_input.flags_rc_ok = false;
}
if (update_rcout_freq) {
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
update_rcout_freq = false;
}
if (update_default_rate) {
hal.rcout->set_default_rate(reg_setup.pwm_defaultrate);
}
}
void AP_IOMCU_FW::process_io_packet()
{
uint8_t rx_crc = rx_io_packet.crc;
rx_io_packet.crc = 0;
uint8_t calc_crc = crc_crc8((const uint8_t *)&rx_io_packet, rx_io_packet.get_size());
if (rx_crc != calc_crc) {
memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet));
tx_io_packet.count = 0;
tx_io_packet.code = CODE_CORRUPT;
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
num_bad_crc++;
return;
}
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.code) {
case CODE_READ: {
num_code_read++;
if (!handle_code_read()) {
memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet));
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
}
2018-09-14 07:06:59 -03:00
}
break;
case CODE_WRITE: {
num_write_pkt++;
if (!handle_code_write()) {
memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet));
tx_io_packet.count = 0;
tx_io_packet.code = CODE_ERROR;
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
}
2018-09-14 07:06:59 -03:00
}
break;
default: {
num_unknown_pkt++;
}
break;
}
}
/*
update dynamic elements of status page
*/
void AP_IOMCU_FW::page_status_update(void)
{
reg_status.vrssi = adc_sample_vrssi();
reg_status.vservo = adc_sample_vservo();
}
bool AP_IOMCU_FW::handle_code_read()
{
2018-09-14 07:06:59 -03:00
uint16_t *values = nullptr;
#define COPY_PAGE(_page_name) \
do { \
values = (uint16_t *)&_page_name; \
tx_io_packet.count = sizeof(_page_name) / sizeof(uint16_t); \
} while(0);
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.page) {
case PAGE_SETUP:
COPY_PAGE(reg_setup);
break;
case PAGE_RAW_RCIN:
COPY_PAGE(rc_input);
break;
case PAGE_STATUS:
page_status_update();
2018-09-14 07:06:59 -03:00
COPY_PAGE(reg_status);
break;
case PAGE_SERVOS:
COPY_PAGE(reg_servo);
break;
default:
return false;
}
last_page = rx_io_packet.page;
2018-09-14 07:06:59 -03:00
last_offset = rx_io_packet.offset;
2018-09-14 07:06:59 -03:00
/* if the offset is at or beyond the end of the page, we have no data */
if (rx_io_packet.offset >= tx_io_packet.count) {
return false;
}
2018-09-14 07:06:59 -03:00
/* correct the data pointer and count for the offset */
values += rx_io_packet.offset;
tx_io_packet.count -= rx_io_packet.offset;
memcpy(tx_io_packet.regs, values, sizeof(uint16_t)*tx_io_packet.count);
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
bool AP_IOMCU_FW::handle_code_write()
{
2018-09-14 07:06:59 -03:00
switch (rx_io_packet.page) {
case PAGE_SETUP:
switch (rx_io_packet.offset) {
case PAGE_REG_SETUP_ARMING:
reg_setup.arming = rx_io_packet.regs[0];
break;
case PAGE_REG_SETUP_FORCE_SAFETY_OFF:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_off();
reg_status.flag_safety_off = true;
} else {
return false;
}
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_FORCE_SAFETY_ON:
if (rx_io_packet.regs[0] == FORCE_SAFETY_MAGIC) {
hal.rcout->force_safety_on();
reg_status.flag_safety_off = false;
} else {
return false;
}
2018-09-14 07:06:59 -03:00
break;
case PAGE_REG_SETUP_ALTRATE:
reg_setup.pwm_altrate = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_PWM_RATE_MASK:
reg_setup.pwm_rates = rx_io_packet.regs[0];
update_rcout_freq = true;
break;
case PAGE_REG_SETUP_DEFAULTRATE:
if (rx_io_packet.regs[0] < 25 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 25;
}
if (rx_io_packet.regs[0] > 400 && reg_setup.pwm_altclock == 1) {
rx_io_packet.regs[0] = 400;
}
reg_setup.pwm_defaultrate = rx_io_packet.regs[0];
update_default_rate = true;
break;
case PAGE_REG_SETUP_SBUS_RATE:
break;
case PAGE_REG_SETUP_FEATURES:
reg_setup.features = rx_io_packet.regs[0];
/* disable the conflicting options with SBUS 1 */
if (reg_setup.features & (P_SETUP_FEATURES_SBUS1_OUT)) {
reg_setup.features &= ~(P_SETUP_FEATURES_PWM_RSSI |
P_SETUP_FEATURES_ADC_RSSI |
P_SETUP_FEATURES_SBUS2_OUT);
}
break;
case PAGE_REG_SETUP_HEATER_DUTY_CYCLE:
reg_setup.heater_duty_cycle = rx_io_packet.regs[0];
last_heater_ms = AP_HAL::millis();
break;
case PAGE_REG_SETUP_REBOOT_BL:
if (reg_status.flag_safety_off) {
// don't allow reboot while armed
return false;
}
// check the magic value
if (rx_io_packet.regs[0] != REBOOT_BL_MAGIC) {
return false;
}
schedule_reboot(100);
break;
default:
break;
2018-09-14 07:06:59 -03:00
}
break;
case PAGE_DIRECT_PWM: {
/* copy channel data */
uint8_t i = 0, offset = rx_io_packet.offset, num_values = rx_io_packet.count;
while ((offset < IOMCU_MAX_CHANNELS) && (num_values > 0)) {
/* XXX range-check value? */
if (rx_io_packet.regs[i] != PWM_IGNORE_THIS_CHANNEL) {
reg_direct_pwm.pwm[offset] = rx_io_packet.regs[i];
}
offset++;
num_values--;
i++;
}
fmu_data_received_time = AP_HAL::millis();
reg_status.flag_fmu_ok = true;
reg_status.flag_raw_pwm = true;
chEvtSignalI(thread_ctx, EVENT_MASK(IOEVENT_PWM));
break;
}
default:
break;
}
memset(&tx_io_packet, 0xFF, sizeof(tx_io_packet));
tx_io_packet.count = 0;
tx_io_packet.code = CODE_SUCCESS;
tx_io_packet.crc = 0;
tx_io_packet.crc = crc_crc8((const uint8_t *)&tx_io_packet, tx_io_packet.get_size());
return true;
}
void AP_IOMCU_FW::schedule_reboot(uint32_t time_ms)
{
do_reboot = true;
reboot_time = AP_HAL::millis() + time_ms;
}
void AP_IOMCU_FW::calculate_fw_crc(void)
{
#define APP_SIZE_MAX 0xf000
#define APP_LOAD_ADDRESS 0x08001000
2018-09-14 07:06:59 -03:00
// compute CRC of the current firmware
uint32_t sum = 0;
2018-09-14 07:06:59 -03:00
for (unsigned p = 0; p < APP_SIZE_MAX; p += 4) {
uint32_t bytes = *(uint32_t *)(p + APP_LOAD_ADDRESS);
sum = crc_crc32(sum, (const uint8_t *)&bytes, sizeof(bytes));
}
2018-09-14 07:06:59 -03:00
reg_setup.crc[0] = sum & 0xFFFF;
reg_setup.crc[1] = sum >> 16;
}
/*
update safety state
*/
void AP_IOMCU_FW::safety_update(void)
{
uint32_t now = AP_HAL::millis();
if (now - safety_update_ms < 100) {
// update safety at 10Hz
return;
}
safety_update_ms = now;
bool safety_pressed = palReadLine(HAL_GPIO_PIN_SAFETY_INPUT);
if (safety_pressed) {
if (reg_status.flag_safety_off && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_ON)) {
safety_pressed = false;
} else if ((!reg_status.flag_safety_off) && (reg_setup.arming & P_SETUP_ARMING_SAFETY_DISABLE_OFF)) {
safety_pressed = false;
}
}
if (safety_pressed) {
safety_button_counter++;
} else {
safety_button_counter = 0;
}
if (safety_button_counter == 10) {
// safety has been pressed for 1 second, change state
reg_status.flag_safety_off = !reg_status.flag_safety_off;
}
led_counter = (led_counter+1) % 16;
const uint16_t led_pattern = reg_status.flag_safety_off?0xFFFF:0x5500;
palWriteLine(HAL_GPIO_PIN_SAFETY_LED, (led_pattern & (1U << led_counter))?0:1);
}
/*
update hal.rcout mode if needed
*/
void AP_IOMCU_FW::rcout_mode_update(void)
{
bool use_oneshot = (reg_setup.features & P_SETUP_FEATURES_ONESHOT) != 0;
if (use_oneshot && !oneshot_enabled) {
oneshot_enabled = true;
hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_ONESHOT);
}
2018-07-13 01:44:16 -03:00
bool use_brushed = (reg_setup.features & P_SETUP_FEATURES_BRUSHED) != 0;
if (use_brushed && !brushed_enabled) {
brushed_enabled = true;
if (reg_setup.pwm_rates == 0) {
// default to 2kHz for all channels for brushed output
reg_setup.pwm_rates = 0xFF;
reg_setup.pwm_altrate = 2000;
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
}
hal.rcout->set_esc_scaling(1000, 2000);
hal.rcout->set_output_mode(reg_setup.pwm_rates, AP_HAL::RCOutput::MODE_PWM_BRUSHED);
hal.rcout->set_freq(reg_setup.pwm_rates, reg_setup.pwm_altrate);
}
}
AP_HAL_MAIN();
#endif // HAL_BOARD_CHIBIOS