Ardupilot2/libraries/AP_OpticalFlow/AP_OpticalFlow_ADNS3080.cpp

459 lines
13 KiB
C++
Raw Normal View History

/*
* AP_OpticalFlow_ADNS3080.cpp - ADNS3080 OpticalFlow Library for
* Ardupilot Mega
* Code by Randy Mackay. DIYDrones.com
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include <AP_HAL.h>
#include "AP_OpticalFlow_ADNS3080.h"
extern const AP_HAL::HAL& hal;
#define AP_SPI_TIMEOUT 1000
union NumericIntType
{
int16_t intValue;
uint16_t uintValue;
uint8_t byteValue[2];
};
// Constructors ////////////////////////////////////////////////////////////////
AP_OpticalFlow_ADNS3080::AP_OpticalFlow_ADNS3080(uint8_t reset_pin) :
_reset_pin(reset_pin)
{
num_pixels = ADNS3080_PIXELS_X;
field_of_view = AP_OPTICALFLOW_ADNS3080_08_FOV;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}
// Public Methods //////////////////////////////////////////////////////////////
// init - initialise sensor
// assumes SPI bus has been initialised but will attempt to initialise
// nonstandard SPI3 bus if required
bool
AP_OpticalFlow_ADNS3080::init()
{
int8_t retry = 0;
bool retvalue = false;
// suspend timer while we set-up SPI communication
hal.scheduler->suspend_timer_procs();
if( _reset_pin != 0)
hal.gpio->pinMode(_reset_pin, GPIO_OUTPUT);
// reset the device
reset();
// check 3 times for the sensor on standard SPI bus
_spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI0);
if (_spi == NULL) {
retvalue = false; goto finish;
}
while( retvalue == false && retry < 3 ) {
if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) {
retvalue = true;
goto finish;
}
retry++;
}
2011-09-17 00:38:18 -03:00
// if not found, check 3 times on SPI3
_spi = hal.spi->device(AP_HAL::SPIDevice_ADNS3080_SPI3);
if (_spi == NULL) {
retvalue = false; goto finish;
}
retry = 0;
while( retvalue == false && retry < 3 ) {
if( read_register(ADNS3080_PRODUCT_ID) == 0x17 ) {
retvalue = true;
}
retry++;
}
// If we fail to find on SPI3, no connection available.
retvalue = false;
_spi = NULL;
finish:
// resume timer
hal.scheduler->resume_timer_procs();
// if device is working register the global static read function to
// be called at 1khz
if( retvalue ) {
hal.scheduler->register_timer_process( AP_OpticalFlow_ADNS3080::read );
}
return retvalue;
}
// Read a register from the sensor
uint8_t AP_OpticalFlow_ADNS3080::read_register(uint8_t address)
{
if (_spi == NULL) return 0;
// get spi semaphore if required
AP_HAL::Semaphore* sem = _spi->get_semaphore();
if( sem != NULL ) {
// if failed to get semaphore then just quietly fail
if( !sem->get(this) ) {
return 0;
}
}
_spi->cs_assert();
// send the device the register you want to read:
_spi->transfer(address);
hal.scheduler->delay_microseconds(50);
// send a value of 0 to read the first byte returned:
uint8_t result = _spi->transfer(0x00);
_spi->cs_release();
// get spi semaphore if required
if( sem != NULL ) {
sem->release(this);
}
return result;
}
// write a value to one of the sensor's registers
void AP_OpticalFlow_ADNS3080::write_register(uint8_t address, uint8_t value)
{
if (_spi == NULL) return;
AP_HAL::Semaphore* sem = _spi->get_semaphore();
// get spi semaphore if required
if( sem != NULL ) {
// if failed to get semaphore then just quietly fail
if( !sem->get(this) ) {
return;
}
}
_spi->cs_assert();
// send register address
_spi->transfer(address | 0x80 );
hal.scheduler->delay_microseconds(50);
// send data
_spi->transfer(value);
_spi->cs_release();
// get spi3 semaphore if required
if( sem != NULL ) {
sem->release(this);
}
}
// reset sensor by holding a pin high (or is it low?) for 10us.
void
AP_OpticalFlow_ADNS3080::reset()
{
// return immediately if the reset pin is not defined
if( _reset_pin == 0)
return;
// reset sensor
hal.gpio->write(_reset_pin, 1);
hal.scheduler->delay_microseconds(10);
// return sensor to normal
hal.gpio->write(_reset_pin, 0);
}
// read latest values from sensor and fill in x,y and totals
void
AP_OpticalFlow_ADNS3080::update(uint32_t now)
{
uint8_t motion_reg;
surface_quality = (uint16_t)read_register(ADNS3080_SQUAL);
hal.scheduler->delay_microseconds(50);
// check for movement, update x,y values
motion_reg = read_register(ADNS3080_MOTION);
// check if we've had an overflow
_overflow = ((motion_reg & 0x10) != 0);
if( (motion_reg & 0x80) != 0 ) {
raw_dx = ((int8_t)read_register(ADNS3080_DELTA_X));
hal.scheduler->delay_microseconds(50);
raw_dy = ((int8_t)read_register(ADNS3080_DELTA_Y));
_motion = true;
}else{
raw_dx = 0;
raw_dy = 0;
}
last_update = hal.scheduler->millis();
apply_orientation_matrix();
}
void
AP_OpticalFlow_ADNS3080::disable_serial_pullup()
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
regVal = (regVal | ADNS3080_SERIALNPU_OFF);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get_led_always_on - returns true if LED is always on, false if only on
// when required
bool AP_OpticalFlow_ADNS3080::get_led_always_on()
{
return ( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x40) > 0 );
}
// set_led_always_on - set parameter to true if you want LED always on,
// otherwise false for only when required
void AP_OpticalFlow_ADNS3080::set_led_always_on( bool alwaysOn )
{
uint8_t regVal = read_register(ADNS3080_CONFIGURATION_BITS);
2011-09-17 00:38:18 -03:00
regVal = (regVal & 0xbf) | (alwaysOn << 6);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
}
// returns resolution (either 400 or 1600 counts per inch)
int16_t AP_OpticalFlow_ADNS3080::get_resolution()
{
if( (read_register(ADNS3080_CONFIGURATION_BITS) & 0x10) == 0 )
return 400;
else
return 1600;
}
// set parameter to 400 or 1600 counts per inch
void AP_OpticalFlow_ADNS3080::set_resolution(uint16_t resolution)
{
uint8_t regVal = read_register(ADNS3080_CONFIGURATION_BITS);
if( resolution == ADNS3080_RESOLUTION_400 ) {
regVal &= ~0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER;
}else if( resolution == ADNS3080_RESOLUTION_1600) {
regVal |= 0x10;
scaler = AP_OPTICALFLOW_ADNS3080_SCALER * 4;
}
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_CONFIGURATION_BITS, regVal);
// this will affect conversion factors so update them
update_conversion_factors();
}
// get_frame_rate_auto - return whether frame rate is set to "auto" or manual
bool AP_OpticalFlow_ADNS3080::get_frame_rate_auto()
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
2011-09-17 00:38:18 -03:00
if( (regVal & 0x01) != 0 ) {
return false;
}else{
return true;
}
}
// set_frame_rate_auto - set frame rate to auto (true) or manual (false)
void AP_OpticalFlow_ADNS3080::set_frame_rate_auto(bool auto_frame_rate)
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
hal.scheduler->delay_microseconds(50);
if( auto_frame_rate == true ) {
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,0xE0);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,0x1A);
hal.scheduler->delay_microseconds(50);
// decide what value to update in extended config
regVal = (regVal & ~0x01);
}else{
// decide what value to update in extended config
regVal = (regVal & ~0x01) | 0x01;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
}
// get frame period
uint16_t AP_OpticalFlow_ADNS3080::get_frame_period()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
hal.scheduler->delay_microseconds(50);
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
return aNum.uintValue;
}
// set frame period
void AP_OpticalFlow_ADNS3080::set_frame_period(uint16_t period)
{
NumericIntType aNum;
aNum.uintValue = period;
// set frame rate to manual
set_frame_rate_auto(false);
hal.scheduler->delay_microseconds(50);
// set specific frame period
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
}
uint16_t AP_OpticalFlow_ADNS3080::get_frame_rate()
{
uint32_t clockSpeed = ADNS3080_CLOCK_SPEED;
uint16_t rate = clockSpeed / get_frame_period();
return rate;
}
void AP_OpticalFlow_ADNS3080::set_frame_rate(uint16_t rate)
{
uint32_t clockSpeed = ADNS3080_CLOCK_SPEED;
uint16_t period = (uint16_t)(clockSpeed / (uint32_t)rate);
set_frame_period(period);
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted
// automatically, false if manual
bool AP_OpticalFlow_ADNS3080::get_shutter_speed_auto()
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
if( (regVal & 0x02) > 0 ) {
return false;
}else{
return true;
}
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
void AP_OpticalFlow_ADNS3080::set_shutter_speed_auto(bool auto_shutter_speed)
{
uint8_t regVal = read_register(ADNS3080_EXTENDED_CONFIG);
hal.scheduler->delay_microseconds(50);
if( auto_shutter_speed ) {
// return shutter speed max to default
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,0x8c);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,0x20);
hal.scheduler->delay_microseconds(50);
// determine value to put into extended config
2011-09-17 00:38:18 -03:00
regVal &= ~0x02;
}else{
// determine value to put into extended config
regVal |= 0x02;
}
write_register(ADNS3080_EXTENDED_CONFIG, regVal);
hal.scheduler->delay_microseconds(50);
}
// get_shutter_speed_auto - returns true if shutter speed is adjusted
// automatically, false if manual
uint16_t AP_OpticalFlow_ADNS3080::get_shutter_speed()
{
NumericIntType aNum;
aNum.byteValue[1] = read_register(ADNS3080_SHUTTER_UPPER);
hal.scheduler->delay_microseconds(50);
aNum.byteValue[0] = read_register(ADNS3080_SHUTTER_LOWER);
return aNum.uintValue;
}
// set_shutter_speed_auto - set shutter speed to auto (true), or manual (false)
2011-09-17 00:38:18 -03:00
void
2012-09-24 18:10:22 -03:00
AP_OpticalFlow_ADNS3080::set_shutter_speed(uint16_t shutter_speed)
{
NumericIntType aNum;
aNum.uintValue = shutter_speed;
// set shutter speed to manual
set_shutter_speed_auto(false);
hal.scheduler->delay_microseconds(50);
// set specific shutter speed
write_register(ADNS3080_SHUTTER_MAX_BOUND_LOWER,aNum.byteValue[0]);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_SHUTTER_MAX_BOUND_UPPER,aNum.byteValue[1]);
hal.scheduler->delay_microseconds(50);
// larger delay
hal.scheduler->delay(50);
// need to update frame period to cause shutter value to take effect
aNum.byteValue[1] = read_register(ADNS3080_FRAME_PERIOD_UPPER);
hal.scheduler->delay_microseconds(50);
aNum.byteValue[0] = read_register(ADNS3080_FRAME_PERIOD_LOWER);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_LOWER,aNum.byteValue[0]);
hal.scheduler->delay_microseconds(50);
write_register(ADNS3080_FRAME_PERIOD_MAX_BOUND_UPPER,aNum.byteValue[1]);
hal.scheduler->delay_microseconds(50);
}
// clear_motion - will cause the Delta_X, Delta_Y, and internal motion
// registers to be cleared
void AP_OpticalFlow_ADNS3080::clear_motion()
{
// writing anything to this register will clear the sensor's motion
// registers
write_register(ADNS3080_MOTION_CLEAR,0xFF);
x = 0;
y = 0;
dx = 0;
dy = 0;
_motion = false;
}
// get_pixel_data - captures an image from the sensor and stores it to the
// pixe_data array
void AP_OpticalFlow_ADNS3080::print_pixel_data()
{
int16_t i,j;
bool isFirstPixel = true;
uint8_t regValue;
uint8_t pixelValue;
// write to frame capture register to force capture of frame
write_register(ADNS3080_FRAME_CAPTURE,0x83);
// wait 3 frame periods + 10 nanoseconds for frame to be captured
// min frame speed is 2000 frames/second so 1 frame = 500 nano seconds.
// so 500 x 3 + 10 = 1510
hal.scheduler->delay_microseconds(1510);
// display the pixel data
for( i=0; i<ADNS3080_PIXELS_Y; i++ ) {
for( j=0; j<ADNS3080_PIXELS_X; j++ ) {
regValue = read_register(ADNS3080_FRAME_CAPTURE);
if( isFirstPixel && (regValue & 0x40) == 0 ) {
hal.console->println_P(
PSTR("Optflow: failed to find first pixel"));
}
isFirstPixel = false;
pixelValue = ( regValue << 2 );
hal.console->print(pixelValue,DEC);
if( j!= ADNS3080_PIXELS_X-1 )
hal.console->print_P(PSTR(","));
hal.scheduler->delay_microseconds(50);
}
hal.console->println();
}
// hardware reset to restore sensor to normal operation
reset();
}