2015-10-06 17:50:35 -03:00
# include <AP_HAL/AP_HAL.h>
# include "AP_NavEKF2.h"
# include "AP_NavEKF2_core.h"
extern const AP_HAL : : HAL & hal ;
2015-10-07 15:27:09 -03:00
/********************************************************
* RESET FUNCTIONS *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/********************************************************
* FUSE MEASURED_DATA *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2015-10-06 17:50:35 -03:00
// select fusion of optical flow measurements
void NavEKF2_core : : SelectFlowFusion ( )
{
2015-10-18 19:34:11 -03:00
// Check if the magnetometer has been fused on that time step and the filter is running at faster than 200 Hz
// If so, don't fuse measurements on this time step to reduce frame over-runs
2015-10-20 06:12:17 -03:00
// Only allow one time slip to prevent high rate magnetometer data preventing fusion of other measurements
if ( magFusePerformed & & dtIMUavg < 0.005f & & ! optFlowFusionDelayed ) {
optFlowFusionDelayed = true ;
2015-10-18 19:34:11 -03:00
return ;
2015-10-20 06:12:17 -03:00
} else {
optFlowFusionDelayed = false ;
2015-10-18 19:34:11 -03:00
}
2015-10-06 17:50:35 -03:00
// Perform Data Checks
// Check if the optical flow data is still valid
flowDataValid = ( ( imuSampleTime_ms - flowValidMeaTime_ms ) < 1000 ) ;
2017-04-27 22:04:12 -03:00
// check is the terrain offset estimate is still valid - if we are using range finder as the main height reference, the ground is assumed to be at 0
gndOffsetValid = ( ( imuSampleTime_ms - gndHgtValidTime_ms ) < 5000 ) | | ( activeHgtSource = = HGT_SOURCE_RNG ) ;
2015-10-06 17:50:35 -03:00
// Perform tilt check
2016-07-12 05:56:58 -03:00
bool tiltOK = ( prevTnb . c . z > frontend - > DCM33FlowMin ) ;
2016-10-06 18:00:39 -03:00
// Constrain measurements to zero if takeoff is not detected and the height above ground
// is insuffient to achieve acceptable focus. This allows the vehicle to be picked up
// and carried to test optical flow operation
if ( ! takeOffDetected & & ( ( terrainState - stateStruct . position . z ) < 0.5f ) ) {
2015-10-06 17:50:35 -03:00
ofDataDelayed . flowRadXYcomp . zero ( ) ;
ofDataDelayed . flowRadXY . zero ( ) ;
flowDataValid = true ;
}
2019-02-24 18:54:29 -04:00
// if have valid flow or range measurements, fuse data into a 1-state EKF to estimate terrain height
2019-03-14 15:45:28 -03:00
if ( ( ( flowDataToFuse & & ( frontend - > _flowUse = = FLOW_USE_TERRAIN ) ) | | rangeDataToFuse ) & & tiltOK ) {
2015-10-06 17:50:35 -03:00
// Estimate the terrain offset (runs a one state EKF)
2019-02-24 18:54:29 -04:00
EstimateTerrainOffset ( ) ;
2015-10-06 17:50:35 -03:00
}
2016-10-02 19:48:10 -03:00
// Fuse optical flow data into the main filter
2019-02-11 18:35:05 -04:00
if ( flowDataToFuse & & tiltOK ) {
2019-03-14 15:45:28 -03:00
if ( frontend - > _flowUse = = FLOW_USE_NAV ) {
2019-02-24 18:54:29 -04:00
// Set the flow noise used by the fusion processes
R_LOS = sq ( MAX ( frontend - > _flowNoise , 0.05f ) ) ;
// Fuse the optical flow X and Y axis data into the main filter sequentially
2019-02-11 18:35:05 -04:00
FuseOptFlow ( ) ;
}
2015-10-06 17:50:35 -03:00
// reset flag to indicate that no new flow data is available for fusion
2015-11-12 04:07:52 -04:00
flowDataToFuse = false ;
2015-10-06 17:50:35 -03:00
}
}
/*
Estimation of terrain offset using a single state EKF
2019-02-21 13:33:38 -04:00
The filter can fuse motion compensated optical flow rates and range finder measurements
2019-02-12 20:55:41 -04:00
Equations generated using https : //github.com/PX4/ecl/tree/master/EKF/matlab/scripts/Terrain%20Estimator
2015-10-06 17:50:35 -03:00
*/
void NavEKF2_core : : EstimateTerrainOffset ( )
{
2019-02-24 18:54:29 -04:00
// horizontal velocity squared
2015-10-06 17:50:35 -03:00
float velHorizSq = sq ( stateStruct . velocity . x ) + sq ( stateStruct . velocity . y ) ;
2019-02-12 20:55:41 -04:00
// don't fuse flow data if LOS rate is misaligned, without GPS, or insufficient velocity, as it is poorly observable
// don't fuse flow data if it exceeds validity limits
2020-05-10 16:02:15 -03:00
// don't update terrain offset if ground is being used as the zero height datum in the main filter
2019-03-14 15:45:28 -03:00
bool cantFuseFlowData = ( ( frontend - > _flowUse ! = FLOW_USE_TERRAIN )
2019-02-24 18:54:29 -04:00
| | gpsNotAvailable
| | PV_AidingMode = = AID_RELATIVE
| | velHorizSq < 25.0f
| | ( MAX ( ofDataDelayed . flowRadXY [ 0 ] , ofDataDelayed . flowRadXY [ 1 ] ) > frontend - > _maxFlowRate ) ) ;
2016-07-12 05:56:58 -03:00
if ( ( ! rangeDataToFuse & & cantFuseFlowData ) | | ( activeHgtSource = = HGT_SOURCE_RNG ) ) {
// skip update
2015-10-06 17:50:35 -03:00
inhibitGndState = true ;
} else {
inhibitGndState = false ;
// record the time we last updated the terrain offset state
gndHgtValidTime_ms = imuSampleTime_ms ;
// propagate ground position state noise each time this is called using the difference in position since the last observations and an RMS gradient assumption
// limit distance to prevent intialisation afer bad gps causing bad numerical conditioning
float distanceTravelledSq = sq ( stateStruct . position [ 0 ] - prevPosN ) + sq ( stateStruct . position [ 1 ] - prevPosE ) ;
2015-11-27 13:11:58 -04:00
distanceTravelledSq = MIN ( distanceTravelledSq , 100.0f ) ;
2015-10-06 17:50:35 -03:00
prevPosN = stateStruct . position [ 0 ] ;
prevPosE = stateStruct . position [ 1 ] ;
2015-11-12 04:11:56 -04:00
// in addition to a terrain gradient error model, we also have the growth in uncertainty due to the copters vertical velocity
2015-11-27 13:11:58 -04:00
float timeLapsed = MIN ( 0.001f * ( imuSampleTime_ms - timeAtLastAuxEKF_ms ) , 1.0f ) ;
2019-02-12 20:55:41 -04:00
float Pincrement = ( distanceTravelledSq * sq ( frontend - > _terrGradMax ) ) + sq ( timeLapsed ) * P [ 5 ] [ 5 ] ;
2015-10-06 17:50:35 -03:00
Popt + = Pincrement ;
timeAtLastAuxEKF_ms = imuSampleTime_ms ;
// fuse range finder data
2015-11-12 04:07:52 -04:00
if ( rangeDataToFuse ) {
2015-10-06 17:50:35 -03:00
// predict range
2016-07-12 05:56:58 -03:00
float predRngMeas = MAX ( ( terrainState - stateStruct . position [ 2 ] ) , rngOnGnd ) / prevTnb . c . z ;
2015-10-06 17:50:35 -03:00
// Copy required states to local variable names
float q0 = stateStruct . quat [ 0 ] ; // quaternion at optical flow measurement time
float q1 = stateStruct . quat [ 1 ] ; // quaternion at optical flow measurement time
float q2 = stateStruct . quat [ 2 ] ; // quaternion at optical flow measurement time
float q3 = stateStruct . quat [ 3 ] ; // quaternion at optical flow measurement time
// Set range finder measurement noise variance. TODO make this a function of range and tilt to allow for sensor, alignment and AHRS errors
2015-11-04 21:00:57 -04:00
float R_RNG = frontend - > _rngNoise ;
2015-10-06 17:50:35 -03:00
// calculate Kalman gain
float SK_RNG = sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ;
float K_RNG = Popt / ( SK_RNG * ( R_RNG + Popt / sq ( SK_RNG ) ) ) ;
// Calculate the innovation variance for data logging
varInnovRng = ( R_RNG + Popt / sq ( SK_RNG ) ) ;
// constrain terrain height to be below the vehicle
2015-11-27 13:11:58 -04:00
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
2015-10-06 17:50:35 -03:00
// Calculate the measurement innovation
2015-11-12 04:07:52 -04:00
innovRng = predRngMeas - rangeDataDelayed . rng ;
2015-10-06 17:50:35 -03:00
// calculate the innovation consistency test ratio
2015-11-27 13:11:58 -04:00
auxRngTestRatio = sq ( innovRng ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _rngInnovGate , 1.0f ) ) * varInnovRng ) ;
2015-10-06 17:50:35 -03:00
2017-06-19 20:40:17 -03:00
// Check the innovation test ratio and don't fuse if too large
if ( auxRngTestRatio < 1.0f ) {
2015-10-06 17:50:35 -03:00
// correct the state
terrainState - = K_RNG * innovRng ;
// constrain the state
2015-11-27 13:11:58 -04:00
terrainState = MAX ( terrainState , stateStruct . position [ 2 ] + rngOnGnd ) ;
2015-10-06 17:50:35 -03:00
// correct the covariance
Popt = Popt - sq ( Popt ) / ( SK_RNG * ( R_RNG + Popt / sq ( SK_RNG ) ) * ( sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ) ) ;
// prevent the state variance from becoming negative
2015-11-27 13:11:58 -04:00
Popt = MAX ( Popt , 0.0f ) ;
2015-10-06 17:50:35 -03:00
}
}
2019-02-24 18:54:29 -04:00
if ( ! cantFuseFlowData ) {
2015-10-06 17:50:35 -03:00
2019-02-12 20:55:41 -04:00
Vector3f relVelSensor ; // velocity of sensor relative to ground in sensor axes
Vector2f losPred ; // predicted optical flow angular rate measurement
2015-10-06 17:50:35 -03:00
float q0 = stateStruct . quat [ 0 ] ; // quaternion at optical flow measurement time
float q1 = stateStruct . quat [ 1 ] ; // quaternion at optical flow measurement time
float q2 = stateStruct . quat [ 2 ] ; // quaternion at optical flow measurement time
float q3 = stateStruct . quat [ 3 ] ; // quaternion at optical flow measurement time
float K_OPT ;
float H_OPT ;
2019-02-12 20:55:41 -04:00
Vector2f auxFlowObsInnovVar ;
2015-10-06 17:50:35 -03:00
// predict range to centre of image
2019-02-12 20:55:41 -04:00
float flowRngPred = MAX ( ( terrainState - stateStruct . position . z ) , rngOnGnd ) / prevTnb . c . z ;
2015-10-06 17:50:35 -03:00
// constrain terrain height to be below the vehicle
2019-02-12 20:55:41 -04:00
terrainState = MAX ( terrainState , stateStruct . position . z + rngOnGnd ) ;
2015-10-06 17:50:35 -03:00
// calculate relative velocity in sensor frame
2016-07-12 05:56:58 -03:00
relVelSensor = prevTnb * stateStruct . velocity ;
2015-10-06 17:50:35 -03:00
// divide velocity by range, subtract body rates and apply scale factor to
// get predicted sensed angular optical rates relative to X and Y sensor axes
2019-02-12 20:55:41 -04:00
losPred . x = relVelSensor . y / flowRngPred ;
losPred . y = - relVelSensor . x / flowRngPred ;
2015-10-06 17:50:35 -03:00
// calculate innovations
2019-02-12 20:55:41 -04:00
auxFlowObsInnov = losPred - ofDataDelayed . flowRadXYcomp ;
// calculate observation jacobians
float t2 = q0 * q0 ;
float t3 = q1 * q1 ;
float t4 = q2 * q2 ;
float t5 = q3 * q3 ;
float t6 = stateStruct . position . z - terrainState ;
float t7 = 1.0f / ( t6 * t6 ) ;
float t8 = q0 * q3 * 2.0f ;
float t9 = t2 - t3 - t4 + t5 ;
// prevent the state variances from becoming badly conditioned
Popt = MAX ( Popt , 1E-6 f ) ;
// calculate observation noise variance from parameter
float flow_noise_variance = sq ( MAX ( frontend - > _flowNoise , 0.05f ) ) ;
// Fuse Y axis data
// Calculate observation partial derivative
H_OPT = t7 * t9 * ( - stateStruct . velocity . z * ( q0 * q2 * 2.0 - q1 * q3 * 2.0 ) + stateStruct . velocity . x * ( t2 + t3 - t4 - t5 ) + stateStruct . velocity . y * ( t8 + q1 * q2 * 2.0 ) ) ;
// calculate innovation variance
auxFlowObsInnovVar . y = H_OPT * Popt * H_OPT + flow_noise_variance ;
// calculate Kalman gain
K_OPT = Popt * H_OPT / auxFlowObsInnovVar . y ;
// calculate the innovation consistency test ratio
auxFlowTestRatio . y = sq ( auxFlowObsInnov . y ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _flowInnovGate , 1.0f ) ) * auxFlowObsInnovVar . y ) ;
// don't fuse if optical flow data is outside valid range
if ( auxFlowTestRatio . y < 1.0f ) {
// correct the state
terrainState - = K_OPT * auxFlowObsInnov . y ;
// constrain the state
terrainState = MAX ( terrainState , stateStruct . position . z + rngOnGnd ) ;
// update intermediate variables used when fusing the X axis
t6 = stateStruct . position . z - terrainState ;
t7 = 1.0f / ( t6 * t6 ) ;
// correct the covariance
Popt = Popt - K_OPT * H_OPT * Popt ;
// prevent the state variances from becoming badly conditioned
Popt = MAX ( Popt , 1E-6 f ) ;
}
// fuse X axis data
H_OPT = - t7 * t9 * ( stateStruct . velocity . z * ( q0 * q1 * 2.0 + q2 * q3 * 2.0 ) + stateStruct . velocity . y * ( t2 - t3 + t4 - t5 ) - stateStruct . velocity . x * ( t8 - q1 * q2 * 2.0 ) ) ;
2015-10-06 17:50:35 -03:00
// calculate innovation variances
2019-02-12 20:55:41 -04:00
auxFlowObsInnovVar . x = H_OPT * Popt * H_OPT + flow_noise_variance ;
2015-10-06 17:50:35 -03:00
// calculate Kalman gain
2019-02-12 20:55:41 -04:00
K_OPT = Popt * H_OPT / auxFlowObsInnovVar . x ;
2015-10-06 17:50:35 -03:00
// calculate the innovation consistency test ratio
2019-02-12 20:55:41 -04:00
auxFlowTestRatio . x = sq ( auxFlowObsInnov . x ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _flowInnovGate , 1.0f ) ) * auxFlowObsInnovVar . x ) ;
2015-10-06 17:50:35 -03:00
// don't fuse if optical flow data is outside valid range
2019-02-12 20:55:41 -04:00
if ( auxFlowTestRatio . x < 1.0f ) {
2015-10-06 17:50:35 -03:00
// correct the state
2019-02-12 20:55:41 -04:00
terrainState - = K_OPT * auxFlowObsInnov . x ;
2015-10-06 17:50:35 -03:00
// constrain the state
2019-02-12 20:55:41 -04:00
terrainState = MAX ( terrainState , stateStruct . position . z + rngOnGnd ) ;
2015-10-06 17:50:35 -03:00
// correct the covariance
Popt = Popt - K_OPT * H_OPT * Popt ;
2019-02-12 20:55:41 -04:00
// prevent the state variances from becoming badly conditioned
Popt = MAX ( Popt , 1E-6 f ) ;
2015-10-06 17:50:35 -03:00
}
}
}
}
/*
2015-10-17 20:32:11 -03:00
* Fuse angular motion compensated optical flow rates using explicit algebraic equations generated with Matlab symbolic toolbox .
* The script file used to generate these and other equations in this filter can be found here :
* https : //github.com/priseborough/InertialNav/blob/master/derivations/RotationVectorAttitudeParameterisation/GenerateNavFilterEquations.m
* Requires a valid terrain height estimate .
2015-10-06 17:50:35 -03:00
*/
void NavEKF2_core : : FuseOptFlow ( )
{
Vector24 H_LOS ;
Vector3f relVelSensor ;
Vector14 SH_LOS ;
Vector2 losPred ;
// Copy required states to local variable names
float q0 = stateStruct . quat [ 0 ] ;
float q1 = stateStruct . quat [ 1 ] ;
float q2 = stateStruct . quat [ 2 ] ;
float q3 = stateStruct . quat [ 3 ] ;
float vn = stateStruct . velocity . x ;
float ve = stateStruct . velocity . y ;
float vd = stateStruct . velocity . z ;
float pd = stateStruct . position . z ;
// constrain height above ground to be above range measured on ground
2015-11-27 13:11:58 -04:00
float heightAboveGndEst = MAX ( ( terrainState - pd ) , rngOnGnd ) ;
2015-10-06 17:50:35 -03:00
float ptd = pd + heightAboveGndEst ;
// Calculate common expressions for observation jacobians
SH_LOS [ 0 ] = sq ( q0 ) - sq ( q1 ) - sq ( q2 ) + sq ( q3 ) ;
SH_LOS [ 1 ] = vn * ( sq ( q0 ) + sq ( q1 ) - sq ( q2 ) - sq ( q3 ) ) - vd * ( 2 * q0 * q2 - 2 * q1 * q3 ) + ve * ( 2 * q0 * q3 + 2 * q1 * q2 ) ;
SH_LOS [ 2 ] = ve * ( sq ( q0 ) - sq ( q1 ) + sq ( q2 ) - sq ( q3 ) ) + vd * ( 2 * q0 * q1 + 2 * q2 * q3 ) - vn * ( 2 * q0 * q3 - 2 * q1 * q2 ) ;
SH_LOS [ 3 ] = 1 / ( pd - ptd ) ;
SH_LOS [ 4 ] = vd * SH_LOS [ 0 ] - ve * ( 2 * q0 * q1 - 2 * q2 * q3 ) + vn * ( 2 * q0 * q2 + 2 * q1 * q3 ) ;
SH_LOS [ 5 ] = 2.0f * q0 * q2 - 2.0f * q1 * q3 ;
SH_LOS [ 6 ] = 2.0f * q0 * q1 + 2.0f * q2 * q3 ;
SH_LOS [ 7 ] = q0 * q0 ;
SH_LOS [ 8 ] = q1 * q1 ;
SH_LOS [ 9 ] = q2 * q2 ;
SH_LOS [ 10 ] = q3 * q3 ;
SH_LOS [ 11 ] = q0 * q3 * 2.0f ;
SH_LOS [ 12 ] = pd - ptd ;
SH_LOS [ 13 ] = 1.0f / ( SH_LOS [ 12 ] * SH_LOS [ 12 ] ) ;
// Fuse X and Y axis measurements sequentially assuming observation errors are uncorrelated
for ( uint8_t obsIndex = 0 ; obsIndex < = 1 ; obsIndex + + ) { // fuse X axis data first
// calculate range from ground plain to centre of sensor fov assuming flat earth
2016-07-12 05:56:58 -03:00
float range = constrain_float ( ( heightAboveGndEst / prevTnb . c . z ) , rngOnGnd , 1000.0f ) ;
2015-10-06 17:50:35 -03:00
2016-10-11 20:45:53 -03:00
// correct range for flow sensor offset body frame position offset
// the corrected value is the predicted range from the sensor focal point to the
// centre of the image on the ground assuming flat terrain
2016-10-27 01:47:26 -03:00
Vector3f posOffsetBody = ( * ofDataDelayed . body_offset ) - accelPosOffset ;
2016-10-14 19:17:48 -03:00
if ( ! posOffsetBody . is_zero ( ) ) {
Vector3f posOffsetEarth = prevTnb . mul_transpose ( posOffsetBody ) ;
range - = posOffsetEarth . z / prevTnb . c . z ;
}
2016-10-11 20:45:53 -03:00
// calculate relative velocity in sensor frame including the relative motion due to rotation
relVelSensor = prevTnb * stateStruct . velocity + ofDataDelayed . bodyRadXYZ % posOffsetBody ;
2015-10-06 17:50:35 -03:00
// divide velocity by range to get predicted angular LOS rates relative to X and Y axes
losPred [ 0 ] = relVelSensor . y / range ;
losPred [ 1 ] = - relVelSensor . x / range ;
// calculate observation jacobians and Kalman gains
memset ( & H_LOS [ 0 ] , 0 , sizeof ( H_LOS ) ) ;
if ( obsIndex = = 0 ) {
H_LOS [ 0 ] = SH_LOS [ 3 ] * SH_LOS [ 2 ] * SH_LOS [ 6 ] - SH_LOS [ 3 ] * SH_LOS [ 0 ] * SH_LOS [ 4 ] ;
H_LOS [ 1 ] = SH_LOS [ 3 ] * SH_LOS [ 2 ] * SH_LOS [ 5 ] ;
H_LOS [ 2 ] = SH_LOS [ 3 ] * SH_LOS [ 0 ] * SH_LOS [ 1 ] ;
H_LOS [ 3 ] = SH_LOS [ 3 ] * SH_LOS [ 0 ] * ( SH_LOS [ 11 ] - q1 * q2 * 2.0f ) ;
H_LOS [ 4 ] = - SH_LOS [ 3 ] * SH_LOS [ 0 ] * ( SH_LOS [ 7 ] - SH_LOS [ 8 ] + SH_LOS [ 9 ] - SH_LOS [ 10 ] ) ;
H_LOS [ 5 ] = - SH_LOS [ 3 ] * SH_LOS [ 0 ] * SH_LOS [ 6 ] ;
H_LOS [ 8 ] = SH_LOS [ 2 ] * SH_LOS [ 0 ] * SH_LOS [ 13 ] ;
float t2 = SH_LOS [ 3 ] ;
float t3 = SH_LOS [ 0 ] ;
float t4 = SH_LOS [ 2 ] ;
float t5 = SH_LOS [ 6 ] ;
float t100 = t2 * t3 * t5 ;
float t6 = SH_LOS [ 4 ] ;
float t7 = t2 * t3 * t6 ;
float t9 = t2 * t4 * t5 ;
float t8 = t7 - t9 ;
float t10 = q0 * q3 * 2.0f ;
float t21 = q1 * q2 * 2.0f ;
float t11 = t10 - t21 ;
float t101 = t2 * t3 * t11 ;
float t12 = pd - ptd ;
float t13 = 1.0f / ( t12 * t12 ) ;
float t104 = t3 * t4 * t13 ;
float t14 = SH_LOS [ 5 ] ;
float t102 = t2 * t4 * t14 ;
float t15 = SH_LOS [ 1 ] ;
float t103 = t2 * t3 * t15 ;
float t16 = q0 * q0 ;
float t17 = q1 * q1 ;
float t18 = q2 * q2 ;
float t19 = q3 * q3 ;
float t20 = t16 - t17 + t18 - t19 ;
float t105 = t2 * t3 * t20 ;
float t22 = P [ 1 ] [ 1 ] * t102 ;
float t23 = P [ 3 ] [ 0 ] * t101 ;
float t24 = P [ 8 ] [ 0 ] * t104 ;
float t25 = P [ 1 ] [ 0 ] * t102 ;
float t26 = P [ 2 ] [ 0 ] * t103 ;
float t63 = P [ 0 ] [ 0 ] * t8 ;
float t64 = P [ 5 ] [ 0 ] * t100 ;
float t65 = P [ 4 ] [ 0 ] * t105 ;
float t27 = t23 + t24 + t25 + t26 - t63 - t64 - t65 ;
float t28 = P [ 3 ] [ 3 ] * t101 ;
float t29 = P [ 8 ] [ 3 ] * t104 ;
float t30 = P [ 1 ] [ 3 ] * t102 ;
float t31 = P [ 2 ] [ 3 ] * t103 ;
float t67 = P [ 0 ] [ 3 ] * t8 ;
float t68 = P [ 5 ] [ 3 ] * t100 ;
float t69 = P [ 4 ] [ 3 ] * t105 ;
float t32 = t28 + t29 + t30 + t31 - t67 - t68 - t69 ;
float t33 = t101 * t32 ;
float t34 = P [ 3 ] [ 8 ] * t101 ;
float t35 = P [ 8 ] [ 8 ] * t104 ;
float t36 = P [ 1 ] [ 8 ] * t102 ;
float t37 = P [ 2 ] [ 8 ] * t103 ;
float t70 = P [ 0 ] [ 8 ] * t8 ;
float t71 = P [ 5 ] [ 8 ] * t100 ;
float t72 = P [ 4 ] [ 8 ] * t105 ;
float t38 = t34 + t35 + t36 + t37 - t70 - t71 - t72 ;
float t39 = t104 * t38 ;
float t40 = P [ 3 ] [ 1 ] * t101 ;
float t41 = P [ 8 ] [ 1 ] * t104 ;
float t42 = P [ 2 ] [ 1 ] * t103 ;
float t73 = P [ 0 ] [ 1 ] * t8 ;
float t74 = P [ 5 ] [ 1 ] * t100 ;
float t75 = P [ 4 ] [ 1 ] * t105 ;
float t43 = t22 + t40 + t41 + t42 - t73 - t74 - t75 ;
float t44 = t102 * t43 ;
float t45 = P [ 3 ] [ 2 ] * t101 ;
float t46 = P [ 8 ] [ 2 ] * t104 ;
float t47 = P [ 1 ] [ 2 ] * t102 ;
float t48 = P [ 2 ] [ 2 ] * t103 ;
float t76 = P [ 0 ] [ 2 ] * t8 ;
float t77 = P [ 5 ] [ 2 ] * t100 ;
float t78 = P [ 4 ] [ 2 ] * t105 ;
float t49 = t45 + t46 + t47 + t48 - t76 - t77 - t78 ;
float t50 = t103 * t49 ;
float t51 = P [ 3 ] [ 5 ] * t101 ;
float t52 = P [ 8 ] [ 5 ] * t104 ;
float t53 = P [ 1 ] [ 5 ] * t102 ;
float t54 = P [ 2 ] [ 5 ] * t103 ;
float t79 = P [ 0 ] [ 5 ] * t8 ;
float t80 = P [ 5 ] [ 5 ] * t100 ;
float t81 = P [ 4 ] [ 5 ] * t105 ;
float t55 = t51 + t52 + t53 + t54 - t79 - t80 - t81 ;
float t56 = P [ 3 ] [ 4 ] * t101 ;
float t57 = P [ 8 ] [ 4 ] * t104 ;
float t58 = P [ 1 ] [ 4 ] * t102 ;
float t59 = P [ 2 ] [ 4 ] * t103 ;
float t83 = P [ 0 ] [ 4 ] * t8 ;
float t84 = P [ 5 ] [ 4 ] * t100 ;
float t85 = P [ 4 ] [ 4 ] * t105 ;
float t60 = t56 + t57 + t58 + t59 - t83 - t84 - t85 ;
float t66 = t8 * t27 ;
float t82 = t100 * t55 ;
float t86 = t105 * t60 ;
float t61 = R_LOS + t33 + t39 + t44 + t50 - t66 - t82 - t86 ;
float t62 = 1.0f / t61 ;
// calculate innovation variance for X axis observation and protect against a badly conditioned calculation
if ( t61 > R_LOS ) {
t62 = 1.0f / t61 ;
2016-05-16 03:16:00 -03:00
faultStatus . bad_yflow = false ;
2015-10-06 17:50:35 -03:00
} else {
t61 = 0.0f ;
t62 = 1.0f / R_LOS ;
2016-05-16 03:16:00 -03:00
faultStatus . bad_yflow = true ;
return ;
2015-10-06 17:50:35 -03:00
}
varInnovOptFlow [ 0 ] = t61 ;
// calculate innovation for X axis observation
innovOptFlow [ 0 ] = losPred [ 0 ] - ofDataDelayed . flowRadXYcomp . x ;
// calculate Kalman gains for X-axis observation
Kfusion [ 0 ] = t62 * ( - P [ 0 ] [ 0 ] * t8 - P [ 0 ] [ 5 ] * t100 + P [ 0 ] [ 3 ] * t101 + P [ 0 ] [ 1 ] * t102 + P [ 0 ] [ 2 ] * t103 + P [ 0 ] [ 8 ] * t104 - P [ 0 ] [ 4 ] * t105 ) ;
Kfusion [ 1 ] = t62 * ( t22 - P [ 1 ] [ 0 ] * t8 - P [ 1 ] [ 5 ] * t100 + P [ 1 ] [ 3 ] * t101 + P [ 1 ] [ 2 ] * t103 + P [ 1 ] [ 8 ] * t104 - P [ 1 ] [ 4 ] * t105 ) ;
Kfusion [ 2 ] = t62 * ( t48 - P [ 2 ] [ 0 ] * t8 - P [ 2 ] [ 5 ] * t100 + P [ 2 ] [ 3 ] * t101 + P [ 2 ] [ 1 ] * t102 + P [ 2 ] [ 8 ] * t104 - P [ 2 ] [ 4 ] * t105 ) ;
Kfusion [ 3 ] = t62 * ( t28 - P [ 3 ] [ 0 ] * t8 - P [ 3 ] [ 5 ] * t100 + P [ 3 ] [ 1 ] * t102 + P [ 3 ] [ 2 ] * t103 + P [ 3 ] [ 8 ] * t104 - P [ 3 ] [ 4 ] * t105 ) ;
Kfusion [ 4 ] = t62 * ( - t85 - P [ 4 ] [ 0 ] * t8 - P [ 4 ] [ 5 ] * t100 + P [ 4 ] [ 3 ] * t101 + P [ 4 ] [ 1 ] * t102 + P [ 4 ] [ 2 ] * t103 + P [ 4 ] [ 8 ] * t104 ) ;
Kfusion [ 5 ] = t62 * ( - t80 - P [ 5 ] [ 0 ] * t8 + P [ 5 ] [ 3 ] * t101 + P [ 5 ] [ 1 ] * t102 + P [ 5 ] [ 2 ] * t103 + P [ 5 ] [ 8 ] * t104 - P [ 5 ] [ 4 ] * t105 ) ;
Kfusion [ 6 ] = t62 * ( - P [ 6 ] [ 0 ] * t8 - P [ 6 ] [ 5 ] * t100 + P [ 6 ] [ 3 ] * t101 + P [ 6 ] [ 1 ] * t102 + P [ 6 ] [ 2 ] * t103 + P [ 6 ] [ 8 ] * t104 - P [ 6 ] [ 4 ] * t105 ) ;
Kfusion [ 7 ] = t62 * ( - P [ 7 ] [ 0 ] * t8 - P [ 7 ] [ 5 ] * t100 + P [ 7 ] [ 3 ] * t101 + P [ 7 ] [ 1 ] * t102 + P [ 7 ] [ 2 ] * t103 + P [ 7 ] [ 8 ] * t104 - P [ 7 ] [ 4 ] * t105 ) ;
Kfusion [ 8 ] = t62 * ( t35 - P [ 8 ] [ 0 ] * t8 - P [ 8 ] [ 5 ] * t100 + P [ 8 ] [ 3 ] * t101 + P [ 8 ] [ 1 ] * t102 + P [ 8 ] [ 2 ] * t103 - P [ 8 ] [ 4 ] * t105 ) ;
Kfusion [ 9 ] = t62 * ( - P [ 9 ] [ 0 ] * t8 - P [ 9 ] [ 5 ] * t100 + P [ 9 ] [ 3 ] * t101 + P [ 9 ] [ 1 ] * t102 + P [ 9 ] [ 2 ] * t103 + P [ 9 ] [ 8 ] * t104 - P [ 9 ] [ 4 ] * t105 ) ;
Kfusion [ 10 ] = t62 * ( - P [ 10 ] [ 0 ] * t8 - P [ 10 ] [ 5 ] * t100 + P [ 10 ] [ 3 ] * t101 + P [ 10 ] [ 1 ] * t102 + P [ 10 ] [ 2 ] * t103 + P [ 10 ] [ 8 ] * t104 - P [ 10 ] [ 4 ] * t105 ) ;
Kfusion [ 11 ] = t62 * ( - P [ 11 ] [ 0 ] * t8 - P [ 11 ] [ 5 ] * t100 + P [ 11 ] [ 3 ] * t101 + P [ 11 ] [ 1 ] * t102 + P [ 11 ] [ 2 ] * t103 + P [ 11 ] [ 8 ] * t104 - P [ 11 ] [ 4 ] * t105 ) ;
Kfusion [ 12 ] = t62 * ( - P [ 12 ] [ 0 ] * t8 - P [ 12 ] [ 5 ] * t100 + P [ 12 ] [ 3 ] * t101 + P [ 12 ] [ 1 ] * t102 + P [ 12 ] [ 2 ] * t103 + P [ 12 ] [ 8 ] * t104 - P [ 12 ] [ 4 ] * t105 ) ;
Kfusion [ 13 ] = t62 * ( - P [ 13 ] [ 0 ] * t8 - P [ 13 ] [ 5 ] * t100 + P [ 13 ] [ 3 ] * t101 + P [ 13 ] [ 1 ] * t102 + P [ 13 ] [ 2 ] * t103 + P [ 13 ] [ 8 ] * t104 - P [ 13 ] [ 4 ] * t105 ) ;
Kfusion [ 14 ] = t62 * ( - P [ 14 ] [ 0 ] * t8 - P [ 14 ] [ 5 ] * t100 + P [ 14 ] [ 3 ] * t101 + P [ 14 ] [ 1 ] * t102 + P [ 14 ] [ 2 ] * t103 + P [ 14 ] [ 8 ] * t104 - P [ 14 ] [ 4 ] * t105 ) ;
Kfusion [ 15 ] = t62 * ( - P [ 15 ] [ 0 ] * t8 - P [ 15 ] [ 5 ] * t100 + P [ 15 ] [ 3 ] * t101 + P [ 15 ] [ 1 ] * t102 + P [ 15 ] [ 2 ] * t103 + P [ 15 ] [ 8 ] * t104 - P [ 15 ] [ 4 ] * t105 ) ;
if ( ! inhibitWindStates ) {
Kfusion [ 22 ] = t62 * ( - P [ 22 ] [ 0 ] * t8 - P [ 22 ] [ 5 ] * t100 + P [ 22 ] [ 3 ] * t101 + P [ 22 ] [ 1 ] * t102 + P [ 22 ] [ 2 ] * t103 + P [ 22 ] [ 8 ] * t104 - P [ 22 ] [ 4 ] * t105 ) ;
Kfusion [ 23 ] = t62 * ( - P [ 23 ] [ 0 ] * t8 - P [ 23 ] [ 5 ] * t100 + P [ 23 ] [ 3 ] * t101 + P [ 23 ] [ 1 ] * t102 + P [ 23 ] [ 2 ] * t103 + P [ 23 ] [ 8 ] * t104 - P [ 23 ] [ 4 ] * t105 ) ;
} else {
Kfusion [ 22 ] = 0.0f ;
Kfusion [ 23 ] = 0.0f ;
}
if ( ! inhibitMagStates ) {
Kfusion [ 16 ] = t62 * ( - P [ 16 ] [ 0 ] * t8 - P [ 16 ] [ 5 ] * t100 + P [ 16 ] [ 3 ] * t101 + P [ 16 ] [ 1 ] * t102 + P [ 16 ] [ 2 ] * t103 + P [ 16 ] [ 8 ] * t104 - P [ 16 ] [ 4 ] * t105 ) ;
Kfusion [ 17 ] = t62 * ( - P [ 17 ] [ 0 ] * t8 - P [ 17 ] [ 5 ] * t100 + P [ 17 ] [ 3 ] * t101 + P [ 17 ] [ 1 ] * t102 + P [ 17 ] [ 2 ] * t103 + P [ 17 ] [ 8 ] * t104 - P [ 17 ] [ 4 ] * t105 ) ;
Kfusion [ 18 ] = t62 * ( - P [ 18 ] [ 0 ] * t8 - P [ 18 ] [ 5 ] * t100 + P [ 18 ] [ 3 ] * t101 + P [ 18 ] [ 1 ] * t102 + P [ 18 ] [ 2 ] * t103 + P [ 18 ] [ 8 ] * t104 - P [ 18 ] [ 4 ] * t105 ) ;
Kfusion [ 19 ] = t62 * ( - P [ 19 ] [ 0 ] * t8 - P [ 19 ] [ 5 ] * t100 + P [ 19 ] [ 3 ] * t101 + P [ 19 ] [ 1 ] * t102 + P [ 19 ] [ 2 ] * t103 + P [ 19 ] [ 8 ] * t104 - P [ 19 ] [ 4 ] * t105 ) ;
Kfusion [ 20 ] = t62 * ( - P [ 20 ] [ 0 ] * t8 - P [ 20 ] [ 5 ] * t100 + P [ 20 ] [ 3 ] * t101 + P [ 20 ] [ 1 ] * t102 + P [ 20 ] [ 2 ] * t103 + P [ 20 ] [ 8 ] * t104 - P [ 20 ] [ 4 ] * t105 ) ;
Kfusion [ 21 ] = t62 * ( - P [ 21 ] [ 0 ] * t8 - P [ 21 ] [ 5 ] * t100 + P [ 21 ] [ 3 ] * t101 + P [ 21 ] [ 1 ] * t102 + P [ 21 ] [ 2 ] * t103 + P [ 21 ] [ 8 ] * t104 - P [ 21 ] [ 4 ] * t105 ) ;
} else {
for ( uint8_t i = 16 ; i < = 21 ; i + + ) {
Kfusion [ i ] = 0.0f ;
}
}
} else {
H_LOS [ 0 ] = - SH_LOS [ 3 ] * SH_LOS [ 6 ] * SH_LOS [ 1 ] ;
H_LOS [ 1 ] = - SH_LOS [ 3 ] * SH_LOS [ 0 ] * SH_LOS [ 4 ] - SH_LOS [ 3 ] * SH_LOS [ 1 ] * SH_LOS [ 5 ] ;
H_LOS [ 2 ] = SH_LOS [ 3 ] * SH_LOS [ 2 ] * SH_LOS [ 0 ] ;
H_LOS [ 3 ] = SH_LOS [ 3 ] * SH_LOS [ 0 ] * ( SH_LOS [ 7 ] + SH_LOS [ 8 ] - SH_LOS [ 9 ] - SH_LOS [ 10 ] ) ;
H_LOS [ 4 ] = SH_LOS [ 3 ] * SH_LOS [ 0 ] * ( SH_LOS [ 11 ] + q1 * q2 * 2.0f ) ;
H_LOS [ 5 ] = - SH_LOS [ 3 ] * SH_LOS [ 0 ] * SH_LOS [ 5 ] ;
H_LOS [ 8 ] = - SH_LOS [ 0 ] * SH_LOS [ 1 ] * SH_LOS [ 13 ] ;
float t2 = SH_LOS [ 3 ] ;
float t3 = SH_LOS [ 0 ] ;
float t4 = SH_LOS [ 1 ] ;
float t5 = SH_LOS [ 5 ] ;
float t100 = t2 * t3 * t5 ;
float t6 = SH_LOS [ 4 ] ;
float t7 = t2 * t3 * t6 ;
float t8 = t2 * t4 * t5 ;
float t9 = t7 + t8 ;
float t10 = q0 * q3 * 2.0f ;
float t11 = q1 * q2 * 2.0f ;
float t12 = t10 + t11 ;
float t101 = t2 * t3 * t12 ;
float t13 = pd - ptd ;
float t14 = 1.0f / ( t13 * t13 ) ;
float t104 = t3 * t4 * t14 ;
float t15 = SH_LOS [ 6 ] ;
float t105 = t2 * t4 * t15 ;
float t16 = SH_LOS [ 2 ] ;
float t102 = t2 * t3 * t16 ;
float t17 = q0 * q0 ;
float t18 = q1 * q1 ;
float t19 = q2 * q2 ;
float t20 = q3 * q3 ;
float t21 = t17 + t18 - t19 - t20 ;
float t103 = t2 * t3 * t21 ;
float t22 = P [ 0 ] [ 0 ] * t105 ;
float t23 = P [ 1 ] [ 1 ] * t9 ;
float t24 = P [ 8 ] [ 1 ] * t104 ;
float t25 = P [ 0 ] [ 1 ] * t105 ;
float t26 = P [ 5 ] [ 1 ] * t100 ;
float t64 = P [ 4 ] [ 1 ] * t101 ;
float t65 = P [ 2 ] [ 1 ] * t102 ;
float t66 = P [ 3 ] [ 1 ] * t103 ;
float t27 = t23 + t24 + t25 + t26 - t64 - t65 - t66 ;
float t28 = t9 * t27 ;
float t29 = P [ 1 ] [ 4 ] * t9 ;
float t30 = P [ 8 ] [ 4 ] * t104 ;
float t31 = P [ 0 ] [ 4 ] * t105 ;
float t32 = P [ 5 ] [ 4 ] * t100 ;
float t67 = P [ 4 ] [ 4 ] * t101 ;
float t68 = P [ 2 ] [ 4 ] * t102 ;
float t69 = P [ 3 ] [ 4 ] * t103 ;
float t33 = t29 + t30 + t31 + t32 - t67 - t68 - t69 ;
float t34 = P [ 1 ] [ 8 ] * t9 ;
float t35 = P [ 8 ] [ 8 ] * t104 ;
float t36 = P [ 0 ] [ 8 ] * t105 ;
float t37 = P [ 5 ] [ 8 ] * t100 ;
float t71 = P [ 4 ] [ 8 ] * t101 ;
float t72 = P [ 2 ] [ 8 ] * t102 ;
float t73 = P [ 3 ] [ 8 ] * t103 ;
float t38 = t34 + t35 + t36 + t37 - t71 - t72 - t73 ;
float t39 = t104 * t38 ;
float t40 = P [ 1 ] [ 0 ] * t9 ;
float t41 = P [ 8 ] [ 0 ] * t104 ;
float t42 = P [ 5 ] [ 0 ] * t100 ;
float t74 = P [ 4 ] [ 0 ] * t101 ;
float t75 = P [ 2 ] [ 0 ] * t102 ;
float t76 = P [ 3 ] [ 0 ] * t103 ;
float t43 = t22 + t40 + t41 + t42 - t74 - t75 - t76 ;
float t44 = t105 * t43 ;
float t45 = P [ 1 ] [ 2 ] * t9 ;
float t46 = P [ 8 ] [ 2 ] * t104 ;
float t47 = P [ 0 ] [ 2 ] * t105 ;
float t48 = P [ 5 ] [ 2 ] * t100 ;
float t63 = P [ 2 ] [ 2 ] * t102 ;
float t77 = P [ 4 ] [ 2 ] * t101 ;
float t78 = P [ 3 ] [ 2 ] * t103 ;
float t49 = t45 + t46 + t47 + t48 - t63 - t77 - t78 ;
float t50 = P [ 1 ] [ 5 ] * t9 ;
float t51 = P [ 8 ] [ 5 ] * t104 ;
float t52 = P [ 0 ] [ 5 ] * t105 ;
float t53 = P [ 5 ] [ 5 ] * t100 ;
float t80 = P [ 4 ] [ 5 ] * t101 ;
float t81 = P [ 2 ] [ 5 ] * t102 ;
float t82 = P [ 3 ] [ 5 ] * t103 ;
float t54 = t50 + t51 + t52 + t53 - t80 - t81 - t82 ;
float t55 = t100 * t54 ;
float t56 = P [ 1 ] [ 3 ] * t9 ;
float t57 = P [ 8 ] [ 3 ] * t104 ;
float t58 = P [ 0 ] [ 3 ] * t105 ;
float t59 = P [ 5 ] [ 3 ] * t100 ;
float t83 = P [ 4 ] [ 3 ] * t101 ;
float t84 = P [ 2 ] [ 3 ] * t102 ;
float t85 = P [ 3 ] [ 3 ] * t103 ;
float t60 = t56 + t57 + t58 + t59 - t83 - t84 - t85 ;
float t70 = t101 * t33 ;
float t79 = t102 * t49 ;
float t86 = t103 * t60 ;
float t61 = R_LOS + t28 + t39 + t44 + t55 - t70 - t79 - t86 ;
float t62 = 1.0f / t61 ;
2019-02-25 16:20:30 -04:00
// calculate innovation variance for Y axis observation and protect against a badly conditioned calculation
2015-10-06 17:50:35 -03:00
if ( t61 > R_LOS ) {
t62 = 1.0f / t61 ;
2016-05-16 03:16:00 -03:00
faultStatus . bad_yflow = false ;
2015-10-06 17:50:35 -03:00
} else {
t61 = 0.0f ;
t62 = 1.0f / R_LOS ;
2016-05-16 03:16:00 -03:00
faultStatus . bad_yflow = true ;
return ;
2015-10-06 17:50:35 -03:00
}
varInnovOptFlow [ 1 ] = t61 ;
// calculate innovation for Y observation
innovOptFlow [ 1 ] = losPred [ 1 ] - ofDataDelayed . flowRadXYcomp . y ;
// calculate Kalman gains for the Y-axis observation
Kfusion [ 0 ] = - t62 * ( t22 + P [ 0 ] [ 1 ] * t9 + P [ 0 ] [ 5 ] * t100 - P [ 0 ] [ 4 ] * t101 - P [ 0 ] [ 2 ] * t102 - P [ 0 ] [ 3 ] * t103 + P [ 0 ] [ 8 ] * t104 ) ;
Kfusion [ 1 ] = - t62 * ( t23 + P [ 1 ] [ 5 ] * t100 + P [ 1 ] [ 0 ] * t105 - P [ 1 ] [ 4 ] * t101 - P [ 1 ] [ 2 ] * t102 - P [ 1 ] [ 3 ] * t103 + P [ 1 ] [ 8 ] * t104 ) ;
Kfusion [ 2 ] = - t62 * ( - t63 + P [ 2 ] [ 1 ] * t9 + P [ 2 ] [ 5 ] * t100 + P [ 2 ] [ 0 ] * t105 - P [ 2 ] [ 4 ] * t101 - P [ 2 ] [ 3 ] * t103 + P [ 2 ] [ 8 ] * t104 ) ;
Kfusion [ 3 ] = - t62 * ( - t85 + P [ 3 ] [ 1 ] * t9 + P [ 3 ] [ 5 ] * t100 + P [ 3 ] [ 0 ] * t105 - P [ 3 ] [ 4 ] * t101 - P [ 3 ] [ 2 ] * t102 + P [ 3 ] [ 8 ] * t104 ) ;
Kfusion [ 4 ] = - t62 * ( - t67 + P [ 4 ] [ 1 ] * t9 + P [ 4 ] [ 5 ] * t100 + P [ 4 ] [ 0 ] * t105 - P [ 4 ] [ 2 ] * t102 - P [ 4 ] [ 3 ] * t103 + P [ 4 ] [ 8 ] * t104 ) ;
Kfusion [ 5 ] = - t62 * ( t53 + P [ 5 ] [ 1 ] * t9 + P [ 5 ] [ 0 ] * t105 - P [ 5 ] [ 4 ] * t101 - P [ 5 ] [ 2 ] * t102 - P [ 5 ] [ 3 ] * t103 + P [ 5 ] [ 8 ] * t104 ) ;
Kfusion [ 6 ] = - t62 * ( P [ 6 ] [ 1 ] * t9 + P [ 6 ] [ 5 ] * t100 + P [ 6 ] [ 0 ] * t105 - P [ 6 ] [ 4 ] * t101 - P [ 6 ] [ 2 ] * t102 - P [ 6 ] [ 3 ] * t103 + P [ 6 ] [ 8 ] * t104 ) ;
Kfusion [ 7 ] = - t62 * ( P [ 7 ] [ 1 ] * t9 + P [ 7 ] [ 5 ] * t100 + P [ 7 ] [ 0 ] * t105 - P [ 7 ] [ 4 ] * t101 - P [ 7 ] [ 2 ] * t102 - P [ 7 ] [ 3 ] * t103 + P [ 7 ] [ 8 ] * t104 ) ;
Kfusion [ 8 ] = - t62 * ( t35 + P [ 8 ] [ 1 ] * t9 + P [ 8 ] [ 5 ] * t100 + P [ 8 ] [ 0 ] * t105 - P [ 8 ] [ 4 ] * t101 - P [ 8 ] [ 2 ] * t102 - P [ 8 ] [ 3 ] * t103 ) ;
Kfusion [ 9 ] = - t62 * ( P [ 9 ] [ 1 ] * t9 + P [ 9 ] [ 5 ] * t100 + P [ 9 ] [ 0 ] * t105 - P [ 9 ] [ 4 ] * t101 - P [ 9 ] [ 2 ] * t102 - P [ 9 ] [ 3 ] * t103 + P [ 9 ] [ 8 ] * t104 ) ;
Kfusion [ 10 ] = - t62 * ( P [ 10 ] [ 1 ] * t9 + P [ 10 ] [ 5 ] * t100 + P [ 10 ] [ 0 ] * t105 - P [ 10 ] [ 4 ] * t101 - P [ 10 ] [ 2 ] * t102 - P [ 10 ] [ 3 ] * t103 + P [ 10 ] [ 8 ] * t104 ) ;
Kfusion [ 11 ] = - t62 * ( P [ 11 ] [ 1 ] * t9 + P [ 11 ] [ 5 ] * t100 + P [ 11 ] [ 0 ] * t105 - P [ 11 ] [ 4 ] * t101 - P [ 11 ] [ 2 ] * t102 - P [ 11 ] [ 3 ] * t103 + P [ 11 ] [ 8 ] * t104 ) ;
Kfusion [ 12 ] = - t62 * ( P [ 12 ] [ 1 ] * t9 + P [ 12 ] [ 5 ] * t100 + P [ 12 ] [ 0 ] * t105 - P [ 12 ] [ 4 ] * t101 - P [ 12 ] [ 2 ] * t102 - P [ 12 ] [ 3 ] * t103 + P [ 12 ] [ 8 ] * t104 ) ;
Kfusion [ 13 ] = - t62 * ( P [ 13 ] [ 1 ] * t9 + P [ 13 ] [ 5 ] * t100 + P [ 13 ] [ 0 ] * t105 - P [ 13 ] [ 4 ] * t101 - P [ 13 ] [ 2 ] * t102 - P [ 13 ] [ 3 ] * t103 + P [ 13 ] [ 8 ] * t104 ) ;
Kfusion [ 14 ] = - t62 * ( P [ 14 ] [ 1 ] * t9 + P [ 14 ] [ 5 ] * t100 + P [ 14 ] [ 0 ] * t105 - P [ 14 ] [ 4 ] * t101 - P [ 14 ] [ 2 ] * t102 - P [ 14 ] [ 3 ] * t103 + P [ 14 ] [ 8 ] * t104 ) ;
Kfusion [ 15 ] = - t62 * ( P [ 15 ] [ 1 ] * t9 + P [ 15 ] [ 5 ] * t100 + P [ 15 ] [ 0 ] * t105 - P [ 15 ] [ 4 ] * t101 - P [ 15 ] [ 2 ] * t102 - P [ 15 ] [ 3 ] * t103 + P [ 15 ] [ 8 ] * t104 ) ;
if ( ! inhibitWindStates ) {
Kfusion [ 22 ] = - t62 * ( P [ 22 ] [ 1 ] * t9 + P [ 22 ] [ 5 ] * t100 + P [ 22 ] [ 0 ] * t105 - P [ 22 ] [ 4 ] * t101 - P [ 22 ] [ 2 ] * t102 - P [ 22 ] [ 3 ] * t103 + P [ 22 ] [ 8 ] * t104 ) ;
Kfusion [ 23 ] = - t62 * ( P [ 23 ] [ 1 ] * t9 + P [ 23 ] [ 5 ] * t100 + P [ 23 ] [ 0 ] * t105 - P [ 23 ] [ 4 ] * t101 - P [ 23 ] [ 2 ] * t102 - P [ 23 ] [ 3 ] * t103 + P [ 23 ] [ 8 ] * t104 ) ;
} else {
Kfusion [ 22 ] = 0.0f ;
Kfusion [ 23 ] = 0.0f ;
}
if ( ! inhibitMagStates ) {
Kfusion [ 16 ] = - t62 * ( P [ 16 ] [ 1 ] * t9 + P [ 16 ] [ 5 ] * t100 + P [ 16 ] [ 0 ] * t105 - P [ 16 ] [ 4 ] * t101 - P [ 16 ] [ 2 ] * t102 - P [ 16 ] [ 3 ] * t103 + P [ 16 ] [ 8 ] * t104 ) ;
Kfusion [ 17 ] = - t62 * ( P [ 17 ] [ 1 ] * t9 + P [ 17 ] [ 5 ] * t100 + P [ 17 ] [ 0 ] * t105 - P [ 17 ] [ 4 ] * t101 - P [ 17 ] [ 2 ] * t102 - P [ 17 ] [ 3 ] * t103 + P [ 17 ] [ 8 ] * t104 ) ;
Kfusion [ 18 ] = - t62 * ( P [ 18 ] [ 1 ] * t9 + P [ 18 ] [ 5 ] * t100 + P [ 18 ] [ 0 ] * t105 - P [ 18 ] [ 4 ] * t101 - P [ 18 ] [ 2 ] * t102 - P [ 18 ] [ 3 ] * t103 + P [ 18 ] [ 8 ] * t104 ) ;
Kfusion [ 19 ] = - t62 * ( P [ 19 ] [ 1 ] * t9 + P [ 19 ] [ 5 ] * t100 + P [ 19 ] [ 0 ] * t105 - P [ 19 ] [ 4 ] * t101 - P [ 19 ] [ 2 ] * t102 - P [ 19 ] [ 3 ] * t103 + P [ 19 ] [ 8 ] * t104 ) ;
Kfusion [ 20 ] = - t62 * ( P [ 20 ] [ 1 ] * t9 + P [ 20 ] [ 5 ] * t100 + P [ 20 ] [ 0 ] * t105 - P [ 20 ] [ 4 ] * t101 - P [ 20 ] [ 2 ] * t102 - P [ 20 ] [ 3 ] * t103 + P [ 20 ] [ 8 ] * t104 ) ;
Kfusion [ 21 ] = - t62 * ( P [ 21 ] [ 1 ] * t9 + P [ 21 ] [ 5 ] * t100 + P [ 21 ] [ 0 ] * t105 - P [ 21 ] [ 4 ] * t101 - P [ 21 ] [ 2 ] * t102 - P [ 21 ] [ 3 ] * t103 + P [ 21 ] [ 8 ] * t104 ) ;
} else {
for ( uint8_t i = 16 ; i < = 21 ; i + + ) {
Kfusion [ i ] = 0.0f ;
}
}
}
// calculate the innovation consistency test ratio
2015-11-27 13:11:58 -04:00
flowTestRatio [ obsIndex ] = sq ( innovOptFlow [ obsIndex ] ) / ( sq ( MAX ( 0.01f * ( float ) frontend - > _flowInnovGate , 1.0f ) ) * varInnovOptFlow [ obsIndex ] ) ;
2015-10-06 17:50:35 -03:00
// Check the innovation for consistency and don't fuse if out of bounds or flow is too fast to be reliable
2015-11-04 21:00:57 -04:00
if ( ( flowTestRatio [ obsIndex ] ) < 1.0f & & ( ofDataDelayed . flowRadXY . x < frontend - > _maxFlowRate ) & & ( ofDataDelayed . flowRadXY . y < frontend - > _maxFlowRate ) ) {
2015-10-06 17:50:35 -03:00
// record the last time observations were accepted for fusion
prevFlowFuseTime_ms = imuSampleTime_ms ;
// correct the covariance P = (I - K*H)*P
// take advantage of the empty columns in KH to reduce the
// number of operations
2015-10-19 23:04:45 -03:00
for ( unsigned i = 0 ; i < = stateIndexLim ; i + + ) {
for ( unsigned j = 0 ; j < = 5 ; j + + ) {
2015-10-06 17:50:35 -03:00
KH [ i ] [ j ] = Kfusion [ i ] * H_LOS [ j ] ;
}
2015-10-19 23:04:45 -03:00
for ( unsigned j = 6 ; j < = 7 ; j + + ) {
2015-10-06 17:50:35 -03:00
KH [ i ] [ j ] = 0.0f ;
}
KH [ i ] [ 8 ] = Kfusion [ i ] * H_LOS [ 8 ] ;
2015-10-19 23:04:45 -03:00
for ( unsigned j = 9 ; j < = 23 ; j + + ) {
2015-10-06 17:50:35 -03:00
KH [ i ] [ j ] = 0.0f ;
}
}
2015-10-19 23:04:45 -03:00
for ( unsigned j = 0 ; j < = stateIndexLim ; j + + ) {
for ( unsigned i = 0 ; i < = stateIndexLim ; i + + ) {
ftype res = 0 ;
res + = KH [ i ] [ 0 ] * P [ 0 ] [ j ] ;
res + = KH [ i ] [ 1 ] * P [ 1 ] [ j ] ;
res + = KH [ i ] [ 2 ] * P [ 2 ] [ j ] ;
res + = KH [ i ] [ 3 ] * P [ 3 ] [ j ] ;
res + = KH [ i ] [ 4 ] * P [ 4 ] [ j ] ;
res + = KH [ i ] [ 5 ] * P [ 5 ] [ j ] ;
res + = KH [ i ] [ 8 ] * P [ 8 ] [ j ] ;
KHP [ i ] [ j ] = res ;
2015-10-06 17:50:35 -03:00
}
}
2016-05-16 03:16:00 -03:00
// Check that we are not going to drive any variances negative and skip the update if so
bool healthyFusion = true ;
for ( uint8_t i = 0 ; i < = stateIndexLim ; i + + ) {
if ( KHP [ i ] [ i ] > P [ i ] [ i ] ) {
healthyFusion = false ;
2015-10-06 17:50:35 -03:00
}
}
2016-05-16 03:16:00 -03:00
if ( healthyFusion ) {
// update the covariance matrix
for ( uint8_t i = 0 ; i < = stateIndexLim ; i + + ) {
for ( uint8_t j = 0 ; j < = stateIndexLim ; j + + ) {
P [ i ] [ j ] = P [ i ] [ j ] - KHP [ i ] [ j ] ;
}
}
2019-02-21 13:33:38 -04:00
// force the covariance matrix to be symmetrical and limit the variances to prevent ill-conditioning.
2016-05-16 03:16:00 -03:00
ForceSymmetry ( ) ;
ConstrainVariances ( ) ;
2015-10-06 17:50:35 -03:00
2019-02-25 16:20:30 -04:00
// zero the attitude error state - by definition it is assumed to be zero before each observation fusion
2016-05-16 03:16:00 -03:00
stateStruct . angErr . zero ( ) ;
// correct the state vector
for ( uint8_t j = 0 ; j < = stateIndexLim ; j + + ) {
statesArray [ j ] = statesArray [ j ] - Kfusion [ j ] * innovOptFlow [ obsIndex ] ;
}
// the first 3 states represent the angular misalignment vector. This is
// is used to correct the estimated quaternion on the current time step
stateStruct . quat . rotate ( stateStruct . angErr ) ;
} else {
// record bad axis
if ( obsIndex = = 0 ) {
faultStatus . bad_xflow = true ;
} else if ( obsIndex = = 1 ) {
faultStatus . bad_yflow = true ;
}
}
}
2015-10-06 17:50:35 -03:00
}
}
2015-10-07 15:27:09 -03:00
/********************************************************
* MISC FUNCTIONS *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
2015-10-06 17:50:35 -03:00