Ardupilot2/libraries/AP_HAL_PX4/Util.cpp

315 lines
7.9 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_PX4
#include <stdio.h>
#include <stdarg.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <apps/nsh.h>
#include <fcntl.h>
#include "UARTDriver.h"
#include <uORB/uORB.h>
#include <uORB/topics/safety.h>
#include <systemlib/board_serial.h>
#include <drivers/drv_gpio.h>
#include <AP_Math/AP_Math.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <drivers/drv_tone_alarm.h>
extern const AP_HAL::HAL& hal;
#include "Util.h"
using namespace PX4;
extern bool _px4_thread_should_exit;
/*
constructor
*/
2015-02-11 05:56:47 -04:00
PX4Util::PX4Util(void) : Util()
{
_safety_handle = orb_subscribe(ORB_ID(safety));
}
/*
start an instance of nsh
*/
bool PX4Util::run_debug_shell(AP_HAL::BetterStream *stream)
{
PX4UARTDriver *uart = (PX4UARTDriver *)stream;
int fd;
// trigger exit in the other threads. This stops use of the
// various driver handles, and especially the px4io handle,
// which otherwise would cause a crash if px4io is stopped in
// the shell
_px4_thread_should_exit = true;
// take control of stream fd
fd = uart->_get_fd();
// mark it blocking (nsh expects a blocking fd)
unsigned v;
v = fcntl(fd, F_GETFL, 0);
fcntl(fd, F_SETFL, v & ~O_NONBLOCK);
// setup the UART on stdin/stdout/stderr
close(0);
close(1);
close(2);
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
nsh_consolemain(0, nullptr);
// this shouldn't happen
hal.console->printf("shell exited\n");
return true;
}
/*
return state of safety switch
*/
enum PX4Util::safety_state PX4Util::safety_switch_state(void)
{
#if !HAL_HAVE_SAFETY_SWITCH
return AP_HAL::Util::SAFETY_NONE;
#endif
if (_safety_handle == -1) {
_safety_handle = orb_subscribe(ORB_ID(safety));
}
if (_safety_handle == -1) {
return AP_HAL::Util::SAFETY_NONE;
}
struct safety_s safety;
if (orb_copy(ORB_ID(safety), _safety_handle, &safety) != OK) {
return AP_HAL::Util::SAFETY_NONE;
}
if (!safety.safety_switch_available) {
return AP_HAL::Util::SAFETY_NONE;
}
if (safety.safety_off) {
return AP_HAL::Util::SAFETY_ARMED;
}
return AP_HAL::Util::SAFETY_DISARMED;
}
/*
display PX4 system identifer - board type and serial number
*/
bool PX4Util::get_system_id(char buf[40])
{
uint8_t serialid[12];
memset(serialid, 0, sizeof(serialid));
get_board_serial(serialid);
#if defined(CONFIG_ARCH_BOARD_PX4FMU_V1)
const char *board_type = "PX4v1";
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V3)
const char *board_type = "PX4v3";
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V2)
const char *board_type = "PX4v2";
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V4)
const char *board_type = "PX4v4";
2017-07-15 02:12:39 -03:00
#elif defined(CONFIG_ARCH_BOARD_PX4FMU_V4PRO)
const char *board_type = "PX4v4PRO";
#elif defined(CONFIG_ARCH_BOARD_AEROFC_V1)
const char *board_type = "AEROFCv1";
#else
const char *board_type = "PX4v?";
#endif
// this format is chosen to match the human_readable_serial()
// function in auth.c
snprintf(buf, 40, "%s %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
board_type,
(unsigned)serialid[0], (unsigned)serialid[1], (unsigned)serialid[2], (unsigned)serialid[3],
(unsigned)serialid[4], (unsigned)serialid[5], (unsigned)serialid[6], (unsigned)serialid[7],
(unsigned)serialid[8], (unsigned)serialid[9], (unsigned)serialid[10],(unsigned)serialid[11]);
buf[39] = 0;
return true;
}
2013-12-28 01:01:28 -04:00
/**
how much free memory do we have in bytes.
*/
uint32_t PX4Util::available_memory(void)
2013-12-28 01:01:28 -04:00
{
return mallinfo().fordblks;
2013-12-28 01:01:28 -04:00
}
/*
AP_HAL wrapper around PX4 perf counters
*/
PX4Util::perf_counter_t PX4Util::perf_alloc(PX4Util::perf_counter_type t, const char *name)
{
::perf_counter_type px4_t;
switch (t) {
case PX4Util::PC_COUNT:
px4_t = ::PC_COUNT;
break;
case PX4Util::PC_ELAPSED:
px4_t = ::PC_ELAPSED;
break;
case PX4Util::PC_INTERVAL:
px4_t = ::PC_INTERVAL;
break;
default:
return nullptr;
}
return (perf_counter_t)::perf_alloc(px4_t, name);
}
void PX4Util::perf_begin(perf_counter_t h)
{
::perf_begin((::perf_counter_t)h);
}
void PX4Util::perf_end(perf_counter_t h)
{
::perf_end((::perf_counter_t)h);
}
void PX4Util::perf_count(perf_counter_t h)
{
::perf_count((::perf_counter_t)h);
}
void PX4Util::set_imu_temp(float current)
{
if (!_heater.target || *_heater.target == -1) {
return;
}
// average over temperatures to remove noise
_heater.count++;
_heater.sum += current;
// update once a second
uint32_t now = AP_HAL::millis();
if (now - _heater.last_update_ms < 1000) {
return;
}
_heater.last_update_ms = now;
current = _heater.sum / _heater.count;
_heater.sum = 0;
_heater.count = 0;
// experimentally tweaked for Pixhawk2
const float kI = 0.3f;
const float kP = 200.0f;
float target = (float)(*_heater.target);
// limit to 65 degrees to prevent damage
target = constrain_float(target, 0, 65);
float err = target - current;
_heater.integrator += kI * err;
_heater.integrator = constrain_float(_heater.integrator, 0, 70);
float output = constrain_float(kP * err + _heater.integrator, 0, 100);
// hal.console->printf("integrator %.1f out=%.1f temp=%.2f err=%.2f\n", _heater.integrator, output, current, err);
if (_heater.fd == -1) {
_heater.fd = open("/dev/px4io", O_RDWR);
}
if (_heater.fd != -1) {
ioctl(_heater.fd, GPIO_SET_HEATER_DUTY_CYCLE, (unsigned)output);
}
}
void PX4Util::set_imu_target_temp(int8_t *target)
{
_heater.target = target;
}
extern "C" {
extern void *fat_dma_alloc(size_t);
extern void fat_dma_free(void *, size_t);
}
/*
allocate DMA-capable memory if possible. Otherwise return normal
memory.
*/
void *PX4Util::malloc_type(size_t size, AP_HAL::Util::Memory_Type mem_type)
{
#if !defined(CONFIG_ARCH_BOARD_PX4FMU_V1)
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return fat_dma_alloc(size);
} else {
return calloc(1, size);
}
2016-11-26 16:45:54 -04:00
#else
return calloc(1, size);
2016-11-26 16:45:54 -04:00
#endif
}
void PX4Util::free_type(void *ptr, size_t size, AP_HAL::Util::Memory_Type mem_type)
{
#if !defined(CONFIG_ARCH_BOARD_PX4FMU_V1)
if (mem_type == AP_HAL::Util::MEM_DMA_SAFE) {
return fat_dma_free(ptr, size);
} else {
return free(ptr);
}
2016-11-26 16:45:54 -04:00
#else
return free(ptr);
#endif
}
extern "C" {
int bl_update_main(int argc, char *argv[]);
int tone_alarm_main(int argc, char *argv[]);
};
bool PX4Util::flash_bootloader()
{
#if !defined(CONFIG_ARCH_BOARD_AEROFC_V1)
if (AP_BoardConfig::px4_start_driver(bl_update_main, "bl_update", "/etc/bootloader/fmu_bl.bin")) {
hal.console->printf("updated bootloader\n");
return true;
}
#endif
return false;
}
bool PX4Util::toneAlarm_init()
{
if (!AP_BoardConfig::px4_start_driver(tone_alarm_main, "tone_alarm", "start")) {
hal.console->printf("Failed to start tone_alarm\n");
return false;
}
_tonealarm_fd = open(TONEALARM0_DEVICE_PATH, O_WRONLY);
if (_tonealarm_fd == -1) {
hal.console->printf("ToneAlarm_PX4: Unable to open " TONEALARM0_DEVICE_PATH);
return false;
}
return true;
}
void PX4Util::toneAlarm_set_buzzer_tone(float frequency, float volume, uint32_t duration_ms)
{
if (_tonealarm_fd == -1) {
return;
}
if (is_zero(frequency) || is_zero(volume)) {
write(_tonealarm_fd, "MFP", 4);
} else {
unsigned note = constrain_float(roundf(17.3123404906676f*logf(frequency) - 71.3763165622959f), 4, 87); // constraint based on comment in PX4 tonealarm driver - "note value in the range C1 to B7"
char tune[20];
snprintf(tune, sizeof(tune), "MFMLT32L1N%u", note);
tune[sizeof(tune)-1] = '\0';
write(_tonealarm_fd, tune, strlen(tune)+1);
}
}
#endif // CONFIG_HAL_BOARD == HAL_BOARD_PX4