Ardupilot2/libraries/AP_AHRS/AP_AHRS_DCM.cpp

498 lines
15 KiB
C++
Raw Normal View History

/*
APM_AHRS_DCM.cpp
AHRS system using DCM matrices
Based on DCM code by Doug Weibel, Jordi Mu<EFBFBD>oz and Jose Julio. DIYDrones.com
Adapted for the general ArduPilot AHRS interface by Andrew Tridgell
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public License
as published by the Free Software Foundation; either version 2.1
of the License, or (at your option) any later version.
*/
#include <FastSerial.h>
#include <AP_AHRS.h>
// this is the speed in cm/s above which we first get a yaw lock with
// the GPS
#define GPS_SPEED_MIN 300
// this is the speed in cm/s at which we stop using drift correction
// from the GPS and wait for the ground speed to get above GPS_SPEED_MIN
#define GPS_SPEED_RESET 100
// table of user settable parameters
const AP_Param::GroupInfo AP_AHRS::var_info[] PROGMEM = {
// @Param: YAW_P
// @DisplayName: Yaw P
// @Description: This controls the weight the compass has on the overall heading
// @Range: 0 .4
// @Increment: .01
AP_GROUPINFO("YAW_P", 0, AP_AHRS_DCM, _kp_yaw),
AP_GROUPEND
};
// run a full DCM update round
void
AP_AHRS_DCM::update(void)
{
float delta_t;
// tell the IMU to grab some data
_imu->update();
// ask the IMU how much time this sensor reading represents
delta_t = _imu->get_delta_time();
// Get current values for gyros
_gyro_vector = _imu->get_gyro();
_accel_vector = _imu->get_accel();
// Integrate the DCM matrix using gyro inputs
matrix_update(delta_t);
// Normalize the DCM matrix
normalize();
// Perform drift correction
drift_correction(delta_t);
// paranoid check for bad values in the DCM matrix
check_matrix();
// Calculate pitch, roll, yaw for stabilization and navigation
euler_angles();
}
// update the DCM matrix using only the gyros
void
AP_AHRS_DCM::matrix_update(float _G_Dt)
{
// _omega_integ_corr is used for centripetal correction
// (theoretically better than _omega)
_omega_integ_corr = _gyro_vector + _omega_I;
// Equation 16, adding proportional and integral correction terms
_omega = _omega_integ_corr + _omega_P;
// this is a replacement of the DCM matrix multiply (equation
// 17), with known zero elements removed and the matrix
// operations inlined. This runs much faster than the original
// version of this code, as the compiler was doing a terrible
// job of realising that so many of the factors were in common
// or zero. It also uses much less stack, as we no longer need
// two additional local matrices
Vector3f r = _omega * _G_Dt;
_dcm_matrix.rotate(r);
}
2011-12-13 06:32:50 -04:00
/*
reset the DCM matrix and omega. Used on ground start, and on
extreme errors in the matrix
*/
void
AP_AHRS_DCM::reset(bool recover_eulers)
2011-12-13 06:32:50 -04:00
{
if (_compass != NULL) {
_compass->null_offsets_disable();
}
// reset the integration terms
_omega_I.zero();
_omega_P.zero();
_omega_integ_corr.zero();
_omega.zero();
// if the caller wants us to try to recover to the current
// attitude then calculate the dcm matrix from the current
// roll/pitch/yaw values
if (recover_eulers && !isnan(roll) && !isnan(pitch) && !isnan(yaw)) {
2012-03-10 02:07:07 -04:00
_dcm_matrix.from_euler(roll, pitch, yaw);
} else {
// otherwise make it flat
2012-03-10 02:07:07 -04:00
_dcm_matrix.from_euler(0, 0, 0);
}
if (_compass != NULL) {
_compass->null_offsets_enable(); // This call is needed to restart the nulling
// Otherwise the reset in the DCM matrix can mess up
// the nulling
}
2011-12-13 06:32:50 -04:00
}
/*
check the DCM matrix for pathological values
*/
void
AP_AHRS_DCM::check_matrix(void)
{
if (_dcm_matrix.is_nan()) {
//Serial.printf("ERROR: DCM matrix NAN\n");
SITL_debug("ERROR: DCM matrix NAN\n");
renorm_blowup_count++;
reset(true);
return;
}
// some DCM matrix values can lead to an out of range error in
// the pitch calculation via asin(). These NaN values can
// feed back into the rest of the DCM matrix via the
// error_course value.
if (!(_dcm_matrix.c.x < 1.0 &&
_dcm_matrix.c.x > -1.0)) {
// We have an invalid matrix. Force a normalisation.
renorm_range_count++;
normalize();
if (_dcm_matrix.is_nan() ||
fabs(_dcm_matrix.c.x) > 10) {
// normalisation didn't fix the problem! We're
// in real trouble. All we can do is reset
//Serial.printf("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
// _dcm_matrix.c.x);
SITL_debug("ERROR: DCM matrix error. _dcm_matrix.c.x=%f\n",
_dcm_matrix.c.x);
renorm_blowup_count++;
reset(true);
}
}
}
// renormalise one vector component of the DCM matrix
// this will return false if renormalization fails
bool
AP_AHRS_DCM::renorm(Vector3f const &a, Vector3f &result)
{
float renorm_val;
// numerical errors will slowly build up over time in DCM,
// causing inaccuracies. We can keep ahead of those errors
// using the renormalization technique from the DCM IMU paper
// (see equations 18 to 21).
// For APM we don't bother with the taylor expansion
// optimisation from the paper as on our 2560 CPU the cost of
// the sqrt() is 44 microseconds, and the small time saving of
// the taylor expansion is not worth the potential of
// additional error buildup.
// Note that we can get significant renormalisation values
// when we have a larger delta_t due to a glitch eleswhere in
// APM, such as a I2c timeout or a set of EEPROM writes. While
// we would like to avoid these if possible, if it does happen
// we don't want to compound the error by making DCM less
// accurate.
renorm_val = 1.0 / a.length();
// keep the average for reporting
_renorm_val_sum += renorm_val;
_renorm_val_count++;
if (!(renorm_val < 2.0 && renorm_val > 0.5)) {
// this is larger than it should get - log it as a warning
renorm_range_count++;
if (!(renorm_val < 1.0e6 && renorm_val > 1.0e-6)) {
// we are getting values which are way out of
// range, we will reset the matrix and hope we
// can recover our attitude using drift
// correction before we hit the ground!
//Serial.printf("ERROR: DCM renormalisation error. renorm_val=%f\n",
// renorm_val);
SITL_debug("ERROR: DCM renormalisation error. renorm_val=%f\n",
renorm_val);
renorm_blowup_count++;
return false;
}
}
result = a * renorm_val;
return true;
}
/*************************************************
Direction Cosine Matrix IMU: Theory
William Premerlani and Paul Bizard
Numerical errors will gradually reduce the orthogonality conditions expressed by equation 5
to approximations rather than identities. In effect, the axes in the two frames of reference no
longer describe a rigid body. Fortunately, numerical error accumulates very slowly, so it is a
simple matter to stay ahead of it.
We call the process of enforcing the orthogonality conditions <EFBFBD>renormalization<EFBFBD>.
*/
void
AP_AHRS_DCM::normalize(void)
{
float error;
Vector3f t0, t1, t2;
error = _dcm_matrix.a * _dcm_matrix.b; // eq.18
t0 = _dcm_matrix.a - (_dcm_matrix.b * (0.5f * error)); // eq.19
t1 = _dcm_matrix.b - (_dcm_matrix.a * (0.5f * error)); // eq.19
t2 = t0 % t1; // c= a x b // eq.20
if (!renorm(t0, _dcm_matrix.a) ||
!renorm(t1, _dcm_matrix.b) ||
!renorm(t2, _dcm_matrix.c)) {
// Our solution is blowing up and we will force back
// to last euler angles
reset(true);
}
}
// yaw drift correction using the compass
void
AP_AHRS_DCM::drift_correction_compass(float deltat)
{
if (_compass == NULL ||
_compass->last_update == _compass_last_update) {
// slowly degrade the yaw error term so we cope
// gracefully with the compass going offline
_drift_error_earth.z *= 0.97;
return;
}
Vector3f mag = Vector3f(_compass->mag_x, _compass->mag_y, _compass->mag_z);
if (!_have_initial_yaw) {
// this is our first estimate of the yaw,
// or the compass has come back online after
// no readings for 2 seconds.
//
// construct a DCM matrix based on the current
// roll/pitch and the compass heading.
// First ensure the compass heading has been
// calculated
_compass->calculate(_dcm_matrix);
// now construct a new DCM matrix
_compass->null_offsets_disable();
_dcm_matrix.from_euler(roll, pitch, _compass->heading);
_compass->null_offsets_enable();
_have_initial_yaw = true;
_field_strength = mag.length();
_compass_last_update = _compass->last_update;
return;
}
float yaw_deltat = 1.0e-6*(_compass->last_update - _compass_last_update);
_compass_last_update = _compass->last_update;
// keep a estimate of the magnetic field strength
_field_strength = (_field_strength * 0.95) + (mag.length() * 0.05);
// get the mag vector in the earth frame
Vector3f rb = _dcm_matrix * mag;
// normalise rb so that it can be directly combined with
// rotations given by the accelerometers, which are in 1g units
rb *= yaw_deltat / _field_strength;
if (rb.is_inf()) {
// not a valid vector
return;
}
// get the earths magnetic field (only X and Y components needed)
Vector3f mag_earth = Vector3f(cos(_compass->get_declination()),
sin(_compass->get_declination()), 0);
// calculate the error term in earth frame
Vector3f error = rb % mag_earth;
// setup the z component of the total drift error in earth
// frame. This is then used by the main drift correction code
_drift_error_earth.z = error.z*70; //constrain(error.z, -0.4, 0.4);
//TODO: figure out proper error scaling instead of using 70
_error_yaw_sum += fabs(_drift_error_earth.z);
_error_yaw_count++;
}
// perform drift correction. This function aims to update _omega_P and
// _omega_I with our best estimate of the short term and long term
// gyro error. The _omega_P value is what pulls our attitude solution
// back towards the reference vector quickly. The _omega_I term is an
// attempt to learn the long term drift rate of the gyros.
//
// This drift correction implementation is based on a paper
// by Bill Premerlani from here:
// http://gentlenav.googlecode.com/files/RollPitchDriftCompensation.pdf
void
AP_AHRS_DCM::drift_correction(float deltat)
{
Vector3f error;
Vector3f gps_velocity;
bool nogps=false;
uint32_t last_correction_time;
if(_omega.length() < ToRad(20))
_omega_I += _omega_I_delta * deltat;
// perform yaw drift correction if we have a new yaw reference
// vector
drift_correction_compass(deltat);
// scale the accel vector so it is in 1g units. This brings it
// into line with the mag vector, allowing the two to be combined
_accel_vector *= (deltat / _gravity);
// integrate the accel vector in the earth frame between GPS readings
_ra_sum += _dcm_matrix * _accel_vector;
// keep a sum of the deltat values, so we know how much time
// we have integrated over
_ra_deltat += deltat;
if (_gps == NULL || _gps->status() != GPS::GPS_OK) {
// no GPS, or no lock. We assume zero velocity. This at
// least means we can cope with gyro drift while sitting
// on a bench with no GPS lock
if (_ra_deltat < 0.1) {
// not enough time has accumulated
return;
}
nogps=true;
gps_velocity.zero();
last_correction_time = millis();
} else {
if (_gps->last_fix_time == _ra_sum_start) {
// we don't have a new GPS fix - nothing more to do
return;
}
gps_velocity = Vector3f(_gps->velocity_north(), _gps->velocity_east(), 0);
last_correction_time = _gps->last_fix_time;
}
// see if this is our first time through - in which case we
// just setup the start times and return
if (_ra_sum_start == 0) {
_ra_sum_start = last_correction_time;
_gps_last_velocity = gps_velocity;
return;
}
// get the corrected acceleration vector in earth frame. Units
// are 1g
Vector3f ge;
if(!nogps) {
ge = Vector3f(0, 0, -1.0) + ((gps_velocity - _gps_last_velocity)/_gravity)/_ra_deltat;
}
else {
ge = Vector3f(0, 0, -1.0);
}
// calculate the error term in earth frame
error = (_ra_sum/_ra_deltat % ge)/ge.length();
// extract the X and Y components for the total drift
// error. The Z component comes from the yaw source
// we constrain the error on each axis to 0.2
// the Z component of this error comes from the yaw correction
_drift_error_earth.x = error.x; //constrain(error.x, -0.2, 0.2);
_drift_error_earth.y = error.y;// constrain(error.y, -0.2, 0.2);
//_drift_error_earth.z = error.z;
// convert the error term to body frame
error = _dcm_matrix.mul_transpose(_drift_error_earth);
// we now want to calculate _omega_P and _omega_I. The
// _omega_P value is what drags us quickly to the
// accelerometer reading.
_omega_P = error * _kp;
_omega_I_delta = (error * _ki) / _ra_deltat;
// the _omega_I is the long term accumulated gyro
// error. This determines how much gyro drift we can
// handle.
//_omega_I_delta_sum += error * _ki * _ra_deltat;
//_omega_I_sum_time += _ra_deltat;
// if we have accumulated a gyro drift estimate for 15
// seconds, then move it to the _omega_I term which is applied
// on each update
/*if (_omega_I_sum_time > 5) {
// limit the slope of omega_I on each axis to
// the maximum drift rate reported by the sensor driver
//float drift_limit = _gyro_drift_limit * _ra_deltat * 2;
_omega_I_delta_sum /= _omega_I_sum_time;
_omega_I_delta_sum.x =_omega_I_delta_sum.x; //constrain(_omega_I_delta_sum.x, -drift_limit, drift_limit);
_omega_I_delta_sum.y =_omega_I_delta_sum.y; //constrain(_omega_I_delta_sum.y, -drift_limit, drift_limit);
_omega_I_delta_sum.z =_omega_I_delta_sum.z; //constrain(_omega_I_delta_sum.z, -drift_limit, drift_limit);
_omega_I_delta = _omega_I_delta_sum;
_omega_I_delta_sum.zero();
_omega_I_sum_time = 0;
}*/
// zero our accumulator ready for the next GPS step
_ra_sum.zero();
_ra_deltat = 0;
_ra_sum_start = last_correction_time;
// remember the GPS velocity for next time
_gps_last_velocity = gps_velocity;
// these sums support the reporting of the DCM state via MAVLink
_error_rp_sum += Vector3f(_drift_error_earth.x, _drift_error_earth.y, 0).length();
_error_rp_count++;
}
// calculate the euler angles which will be used for high level
// navigation control
void
AP_AHRS_DCM::euler_angles(void)
{
2012-03-10 02:07:07 -04:00
_dcm_matrix.to_euler(&roll, &pitch, &yaw);
roll_sensor = degrees(roll) * 100;
pitch_sensor = degrees(pitch) * 100;
yaw_sensor = degrees(yaw) * 100;
if (yaw_sensor < 0)
yaw_sensor += 36000;
}
/* reporting of DCM state for MAVLink */
// average error_roll_pitch since last call
float AP_AHRS_DCM::get_error_rp(void)
{
if (_error_rp_count == 0) {
// this happens when telemetry is setup on two
// serial ports
return _error_rp_last;
}
_error_rp_last = _error_rp_sum / _error_rp_count;
_error_rp_sum = 0;
_error_rp_count = 0;
return _error_rp_last;
}
// average error_yaw since last call
float AP_AHRS_DCM::get_error_yaw(void)
{
if (_error_yaw_count == 0) {
// this happens when telemetry is setup on two
// serial ports
return _error_yaw_last;
}
_error_yaw_last = _error_yaw_sum / _error_yaw_count;
_error_yaw_sum = 0;
_error_yaw_count = 0;
return _error_yaw_last;
}