Ardupilot2/libraries/AP_Frsky_Telem/AP_Frsky_SPort_Passthrough.h

172 lines
5.7 KiB
C
Raw Normal View History

2020-09-28 01:31:38 -03:00
#pragma once
#include "AP_Frsky_SPort.h"
#include <AP_RCTelemetry/AP_RCTelemetry.h>
#include "AP_Frsky_SPortParser.h"
#include "AP_Frsky_MAVlite.h"
#include "AP_Frsky_Telem.h"
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
#include "AP_Frsky_MAVlite_SPortToMAVlite.h"
#include "AP_Frsky_MAVlite_MAVliteToSPort.h"
#include "AP_Frsky_MAVliteMsgHandler.h"
#define SPORT_TX_PACKET_DUPLICATES 1 // number of duplicates packets we send (fport only)
#endif
2020-09-28 01:31:38 -03:00
class AP_Frsky_SPort_Passthrough : public AP_Frsky_SPort, public AP_RCTelemetry
{
2020-09-28 01:31:38 -03:00
public:
AP_Frsky_SPort_Passthrough(AP_HAL::UARTDriver *port, bool use_external_data, AP_Frsky_Parameters *&frsky_parameters) :
2020-09-28 01:31:38 -03:00
AP_Frsky_SPort(port),
AP_RCTelemetry(WFQ_LAST_ITEM),
_use_external_data(use_external_data),
_frsky_parameters(frsky_parameters)
{
singleton = this;
}
static AP_Frsky_SPort_Passthrough *get_singleton(void) {
return singleton;
}
2020-09-28 01:31:38 -03:00
bool init() override;
bool init_serial_port() override;
// passthrough WFQ scheduler
bool is_packet_ready(uint8_t idx, bool queue_empty) override;
void process_packet(uint8_t idx) override;
void adjust_packet_weight(bool queue_empty) override;
// setup ready for passthrough operation
void setup_wfq_scheduler(void) override;
bool get_next_msg_chunk(void) override;
bool get_telem_data(sport_packet_t* packet_array, uint8_t &packet_count, const uint8_t max_size) override;
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
bool set_telem_data(const uint8_t frame, const uint16_t appid, const uint32_t data) override;
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
2020-09-28 01:31:38 -03:00
void queue_text_message(MAV_SEVERITY severity, const char *text) override
{
AP_RCTelemetry::queue_message(severity, text);
2020-09-28 01:31:38 -03:00
}
enum PassthroughPacketType : uint8_t {
TEXT = 0, // 0x5000 status text (dynamic)
ATTITUDE = 1, // 0x5006 Attitude and range (dynamic)
GPS_LAT = 2, // 0x800 GPS lat
GPS_LON = 3, // 0x800 GPS lon
VEL_YAW = 4, // 0x5005 Vel and Yaw
AP_STATUS = 5, // 0x5001 AP status
GPS_STATUS = 6, // 0x5002 GPS status
HOME = 7, // 0x5004 Home
BATT_2 = 8, // 0x5008 Battery 2 status
BATT_1 = 9, // 0x5008 Battery 1 status
PARAM = 10, // 0x5007 parameters
RPM = 11, // 0x500A rpm sensors 1 and 2
UDATA = 12, // user data
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
MAV = 13, // mavlite
#endif //HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
TERRAIN = 14, // 0x500B terrain data
WFQ_LAST_ITEM // must be last
};
protected:
void send() override;
private:
AP_Frsky_Parameters *&_frsky_parameters;
enum PassthroughParam : uint8_t {
NONE = 0,
FRAME_TYPE = 1,
BATT_FS_VOLTAGE = 2,
BATT_FS_CAPACITY = 3,
BATT_CAPACITY_1 = 4,
BATT_CAPACITY_2 = 5,
TELEMETRY_FEATURES = 6
};
enum PassthroughFeatures : uint8_t {
BIDIR = 0,
SCRIPTING = 1,
2020-09-28 01:31:38 -03:00
};
// methods to convert flight controller data to FrSky SPort Passthrough (OpenTX) format
uint32_t calc_param(void);
uint32_t calc_batt(uint8_t instance);
uint32_t calc_ap_status(void);
uint32_t calc_home(void);
uint32_t calc_velandyaw(void);
uint32_t calc_attiandrng(void);
uint32_t calc_rpm(void);
uint32_t calc_terrain(void);
2020-09-28 01:31:38 -03:00
// use_external_data is set when this library will
// be providing data to another transport, such as FPort
bool _use_external_data;
2020-09-28 01:31:38 -03:00
struct {
sport_packet_t packet;
2020-09-28 01:31:38 -03:00
bool pending;
} external_data;
struct {
2020-09-28 01:31:38 -03:00
uint32_t chunk; // a "chunk" (four characters/bytes) at a time of the queued message to be sent
uint8_t repeats; // send each message "chunk" 3 times to make sure the entire messsage gets through without getting cut
uint8_t char_index; // index of which character to get in the message
} _msg_chunk;
// passthrough default sensor id
uint8_t downlink_sensor_id = 0x1B;
#if HAL_WITH_FRSKY_TELEM_BIDIRECTIONAL
// bidirectional sport telemetry
struct {
uint8_t uplink_sensor_id = 0x0D;
uint8_t downlink1_sensor_id = 0x34;
uint8_t downlink2_sensor_id = 0x67;
uint8_t tx_packet_duplicates;
ObjectBuffer_TS<AP_Frsky_SPort::sport_packet_t> rx_packet_queue{SPORT_PACKET_QUEUE_LENGTH};
ObjectBuffer_TS<AP_Frsky_SPort::sport_packet_t> tx_packet_queue{SPORT_PACKET_QUEUE_LENGTH};
} _SPort_bidir;
AP_Frsky_SPortParser _sport_handler;
AP_Frsky_MAVlite_SPortToMAVlite sport_to_mavlite;
AP_Frsky_MAVlite_MAVliteToSPort mavlite_to_sport;
void set_sensor_id(AP_Int8 idx, uint8_t &sensor);
// tx/rx sport packet processing
void queue_rx_packet(const AP_Frsky_SPort::sport_packet_t sp);
void process_rx_queue(void);
void process_tx_queue(void);
// create an object to handle incoming mavlite messages; a
// callback method is provided to allow the handler to send responses
bool send_message(const AP_Frsky_MAVlite_Message &txmsg);
AP_Frsky_MAVliteMsgHandler mavlite{FUNCTOR_BIND_MEMBER(&AP_Frsky_SPort_Passthrough::send_message, bool, const AP_Frsky_MAVlite_Message &)};
#endif
2020-09-28 01:31:38 -03:00
void send_sport_frame(uint8_t frame, uint16_t appid, uint32_t data);
// true if we need to respond to the last polling byte
bool is_passthrough_byte(const uint8_t byte) const;
2020-09-28 01:31:38 -03:00
uint8_t _paramID;
uint32_t calc_gps_status(void);
static AP_Frsky_SPort_Passthrough *singleton;
};
namespace AP {
AP_Frsky_SPort_Passthrough *frsky_passthrough_telem();
2020-09-28 01:31:38 -03:00
};