Ardupilot2/libraries/AP_Motors/AP_MotorsTri.cpp

240 lines
9.6 KiB
C++
Raw Normal View History

2013-05-29 20:51:34 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_MotorsTri.cpp - ArduCopter motors library
* Code by RandyMackay. DIYDrones.com
*
*/
2012-10-26 20:59:07 -03:00
#include <AP_HAL.h>
#include <AP_Math.h>
#include "AP_MotorsTri.h"
2012-10-26 20:59:07 -03:00
extern const AP_HAL::HAL& hal;
// init
void AP_MotorsTri::Init()
{
// call parent Init function to set-up throttle curve
AP_Motors::Init();
// set update rate for the 3 motors (but not the servo on channel 7)
set_update_rate(_speed_hz);
// set the motor_enabled flag so that the ESCs can be calibrated like other frame types
motor_enabled[AP_MOTORS_MOT_1] = true;
motor_enabled[AP_MOTORS_MOT_2] = true;
motor_enabled[AP_MOTORS_MOT_4] = true;
// disable CH7 from being used as an aux output (i.e. for camera gimbal, etc)
RC_Channel_aux::disable_aux_channel(AP_MOTORS_CH_TRI_YAW);
}
// set update rate to motors - a value in hertz
void AP_MotorsTri::set_update_rate( uint16_t speed_hz )
{
// record requested speed
_speed_hz = speed_hz;
// set update rate for the 3 motors (but not the servo on channel 7)
uint32_t mask =
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]) |
1U << pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]);
hal.rcout->set_freq(mask, _speed_hz);
}
// enable - starts allowing signals to be sent to motors
void AP_MotorsTri::enable()
{
// enable output channels
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]));
hal.rcout->enable_ch(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]));
2012-10-26 20:59:07 -03:00
hal.rcout->enable_ch(AP_MOTORS_CH_TRI_YAW);
}
// output_min - sends minimum values out to the motors
void AP_MotorsTri::output_min()
{
// set lower limit flag
limit.throttle_lower = true;
// send minimum value to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), _rc_throttle.radio_min);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), _rc_throttle.radio_min);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), _rc_throttle.radio_min);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_CH_TRI_YAW]), _rc_yaw.radio_trim);
}
2014-07-26 04:27:39 -03:00
// get_motor_mask - returns a bitmask of which outputs are being used for motors or servos (1 means being used)
// this can be used to ensure other pwm outputs (i.e. for servos) do not conflict
uint16_t AP_MotorsTri::get_motor_mask()
{
// tri copter uses channels 1,2,4 and 7
return (1U << 0 | 1U << 1 | 1U << 3 | 1U << AP_MOTORS_CH_TRI_YAW);
}
// output_armed - sends commands to the motors
void AP_MotorsTri::output_armed()
{
int16_t out_min = _rc_throttle.radio_min + _min_throttle;
int16_t out_max = _rc_throttle.radio_max;
int16_t motor_out[AP_MOTORS_MOT_4+1];
// initialize lower limit flag
limit.throttle_lower = false;
// Throttle is 0 to 1000 only
if (_rc_throttle.servo_out <= 0) {
_rc_throttle.servo_out = 0;
limit.throttle_lower = true;
}
if (_rc_throttle.servo_out >= _max_throttle) {
_rc_throttle.servo_out = _max_throttle;
limit.throttle_upper = true;
}
// tricopters limit throttle to 80%
// To-Do: implement improved stability patch and remove this limit
if (_rc_throttle.servo_out > 800) {
_rc_throttle.servo_out = 800;
limit.throttle_upper = true;
}
// capture desired roll, pitch, yaw and throttle from receiver
_rc_roll.calc_pwm();
_rc_pitch.calc_pwm();
_rc_throttle.calc_pwm();
_rc_yaw.calc_pwm();
// if we are not sending a throttle output, we cut the motors
if(_rc_throttle.servo_out == 0) {
// range check spin_when_armed
if (_spin_when_armed_ramped < 0) {
_spin_when_armed_ramped = 0;
}
if (_spin_when_armed_ramped > _min_throttle) {
_spin_when_armed_ramped = _min_throttle;
}
motor_out[AP_MOTORS_MOT_1] = _rc_throttle.radio_min + _spin_when_armed_ramped;
motor_out[AP_MOTORS_MOT_2] = _rc_throttle.radio_min + _spin_when_armed_ramped;
motor_out[AP_MOTORS_MOT_4] = _rc_throttle.radio_min + _spin_when_armed_ramped;
}else{
int16_t roll_out = (float)_rc_roll.pwm_out * 0.866f;
int16_t pitch_out = _rc_pitch.pwm_out / 2;
// check if throttle is below limit
if (_rc_throttle.servo_out <= _min_throttle) {
limit.throttle_lower = true;
_rc_throttle.servo_out = _min_throttle;
_rc_throttle.calc_pwm(); // recalculate radio.out
}
//left front
motor_out[AP_MOTORS_MOT_2] = _rc_throttle.radio_out + roll_out + pitch_out;
//right front
motor_out[AP_MOTORS_MOT_1] = _rc_throttle.radio_out - roll_out + pitch_out;
// rear
motor_out[AP_MOTORS_MOT_4] = _rc_throttle.radio_out - _rc_pitch.pwm_out;
// Tridge's stability patch
if(motor_out[AP_MOTORS_MOT_1] > out_max) {
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_1] - out_max);
motor_out[AP_MOTORS_MOT_1] = out_max;
}
if(motor_out[AP_MOTORS_MOT_2] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
motor_out[AP_MOTORS_MOT_4] -= (motor_out[AP_MOTORS_MOT_2] - out_max);
motor_out[AP_MOTORS_MOT_2] = out_max;
}
if(motor_out[AP_MOTORS_MOT_4] > out_max) {
motor_out[AP_MOTORS_MOT_1] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
motor_out[AP_MOTORS_MOT_2] -= (motor_out[AP_MOTORS_MOT_4] - out_max);
motor_out[AP_MOTORS_MOT_4] = out_max;
}
// adjust for thrust curve and voltage scaling
motor_out[AP_MOTORS_MOT_1] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_1], out_min, out_max);
motor_out[AP_MOTORS_MOT_2] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_2], out_min, out_max);
motor_out[AP_MOTORS_MOT_4] = apply_thrust_curve_and_volt_scaling(motor_out[AP_MOTORS_MOT_4], out_min, out_max);
// ensure motors don't drop below a minimum value and stop
motor_out[AP_MOTORS_MOT_1] = max(motor_out[AP_MOTORS_MOT_1], out_min);
motor_out[AP_MOTORS_MOT_2] = max(motor_out[AP_MOTORS_MOT_2], out_min);
motor_out[AP_MOTORS_MOT_4] = max(motor_out[AP_MOTORS_MOT_4], out_min);
}
// send output to each motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), motor_out[AP_MOTORS_MOT_1]);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), motor_out[AP_MOTORS_MOT_2]);
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), motor_out[AP_MOTORS_MOT_4]);
// also send out to tail command (we rely on any auto pilot to have updated the rc_yaw->radio_out to the correct value)
// note we do not save the radio_out to the motor_out array so it may not appear in the ch7out in the status screen of the mission planner
// note: we use _rc_tail's (aka channel 7's) REV parameter to control whether the servo is reversed or not but this is a bit nonsensical.
// a separate servo object (including min, max settings etc) would be better or at least a separate parameter to specify the direction of the tail servo
if( _rc_tail.get_reverse() == true ) {
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw.radio_trim - (_rc_yaw.radio_out - _rc_yaw.radio_trim));
}else{
hal.rcout->write(AP_MOTORS_CH_TRI_YAW, _rc_yaw.radio_out);
}
}
// output_disarmed - sends commands to the motors
void AP_MotorsTri::output_disarmed()
{
// Send minimum values to all motors
output_min();
}
// output_test - spin a motor at the pwm value specified
// motor_seq is the motor's sequence number from 1 to the number of motors on the frame
// pwm value is an actual pwm value that will be output, normally in the range of 1000 ~ 2000
void AP_MotorsTri::output_test(uint8_t motor_seq, int16_t pwm)
{
// exit immediately if not armed
if (!_flags.armed) {
return;
}
2012-10-26 20:59:07 -03:00
// output to motors and servos
switch (motor_seq) {
case 1:
// front right motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_1]), pwm);
break;
case 2:
// back motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_4]), pwm);
break;
case 3:
// back servo
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_7]), pwm);
break;
case 4:
// front left motor
hal.rcout->write(pgm_read_byte(&_motor_to_channel_map[AP_MOTORS_MOT_2]), pwm);
break;
default:
// do nothing
break;
}
2012-10-26 20:59:07 -03:00
}