Ardupilot2/ArducopterNG/Radio.pde

142 lines
5.0 KiB
Plaintext
Raw Normal View History

/*
www.ArduCopter.com - www.DIYDrones.com
Copyright (c) 2010. All rights reserved.
An Open Source Arduino based multicopter.
File : Radio.pde
Version : v1.0, Aug 27, 2010
Author(s): ArduCopter Team
Ted Carancho (aeroquad), Jose Julio, Jordi Muñoz,
Jani Hirvinen, Ken McEwans, Roberto Navoni,
Sandro Benigno, Chris Anderson
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
* ************************************************************** *
ChangeLog:
* ************************************************************** *
TODO:
* ************************************************************** */
#define STICK_TO_ANGLE_FACTOR 12.0 // To convert stick position to absolute angles
#define YAW_STICK_TO_ANGLE_FACTOR 150.0
void Read_radio()
{
if (APM_RC.GetState() == 1) // New radio frame?
{
// Commands from radio Rx
// We apply the Radio calibration parameters (from configurator) except for throttle
ch_roll = channel_filter(APM_RC.InputCh(CH_ROLL) * ch_roll_slope + ch_roll_offset, ch_roll);
ch_pitch = channel_filter(APM_RC.InputCh(CH_PITCH) * ch_pitch_slope + ch_pitch_offset, ch_pitch);
ch_throttle = channel_filter(APM_RC.InputCh(CH_THROTTLE), ch_throttle); // Transmiter calibration not used on throttle
ch_yaw = channel_filter(APM_RC.InputCh(CH_RUDDER) * ch_yaw_slope + ch_yaw_offset, ch_yaw);
ch_aux = APM_RC.InputCh(CH_5) * ch_aux_slope + ch_aux_offset;
ch_aux2 = APM_RC.InputCh(CH_6) * ch_aux2_slope + ch_aux2_offset;
// Flight mode
if(ch_aux2 > 1800)
flightMode = 1; // Force to Acro mode from radio
else
flightMode = 0; // Stable mode (default)
// Autopilot mode (only works on Stable mode)
if (flightMode == 0)
{
if(ch_aux > 1800)
AP_mode = 1; // Automatic mode : GPS position hold mode + altitude hold
else
AP_mode = 0; // Normal mode
}
if (flightMode==0) // IN STABLE MODE we convert stick positions to absoulte angles
{
// In Stable mode stick position defines the desired angle in roll, pitch and yaw
#ifdef FLIGHT_MODE_X
// For X mode we make a mix in the input
float aux_roll = (ch_roll-roll_mid) / STICK_TO_ANGLE_FACTOR;
float aux_pitch = (ch_pitch-pitch_mid) / STICK_TO_ANGLE_FACTOR;
command_rx_roll = aux_roll - aux_pitch;
command_rx_pitch = aux_roll + aux_pitch;
#else
command_rx_roll = (ch_roll-roll_mid) / STICK_TO_ANGLE_FACTOR; // Convert stick position to absolute angles
command_rx_pitch = (ch_pitch-pitch_mid) / STICK_TO_ANGLE_FACTOR;
#endif
// YAW
if (abs(ch_yaw-yaw_mid)<8) // Take into account a bit of "dead zone" on yaw
aux_float = 0.0;
else
aux_float = (ch_yaw-yaw_mid) / YAW_STICK_TO_ANGLE_FACTOR;
command_rx_yaw += aux_float;
command_rx_yaw = Normalize_angle(command_rx_yaw); // Normalize angle to [-180,180]
}
// Write Radio data to DataFlash log
Log_Write_Radio(ch_roll,ch_pitch,ch_throttle,ch_yaw,int(K_aux*100),(int)AP_mode);
} // END new radio data
}
// Send output commands to ESC´s
void Motor_output()
{
// Quadcopter mix
if (motorArmed == 1)
{
#ifdef IsAM
digitalWrite(FR_LED, HIGH); // AM-Mode
#endif
// Quadcopter output mix
rightMotor = constrain(ch_throttle - control_roll + control_yaw, minThrottle, 2000);
leftMotor = constrain(ch_throttle + control_roll + control_yaw, minThrottle, 2000);
frontMotor = constrain(ch_throttle + control_pitch - control_yaw, minThrottle, 2000);
backMotor = constrain(ch_throttle - control_pitch - control_yaw, minThrottle, 2000);
}
else // MOTORS DISARMED
{
#ifdef IsAM
digitalWrite(FR_LED, LOW); // AM-Mode
#endif
digitalWrite(LED_Green,HIGH); // Ready LED on
rightMotor = MIN_THROTTLE;
leftMotor = MIN_THROTTLE;
frontMotor = MIN_THROTTLE;
backMotor = MIN_THROTTLE;
// Reset_I_Terms();
roll_I = 0; // reset I terms of PID controls
pitch_I = 0;
yaw_I = 0;
// Initialize yaw command to actual yaw when throttle is down...
command_rx_yaw = ToDeg(yaw);
}
// Send commands to motors
APM_RC.OutputCh(0, rightMotor);
APM_RC.OutputCh(1, leftMotor);
APM_RC.OutputCh(2, frontMotor);
APM_RC.OutputCh(3, backMotor);
// InstantPWM => Force inmediate output on PWM signals
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
}