Ardupilot2/libraries/AP_HAL_Linux/Flow_PX4.cpp

358 lines
13 KiB
C++
Raw Normal View History

/****************************************************************************
*
* Copyright (C) 2013 PX4 Development Team. All rights reserved.
* Author: Petri Tanskanen <tpetri@inf.ethz.ch>
* Lorenz Meier <lm@inf.ethz.ch>
* Samuel Zihlmann <samuezih@ee.ethz.ch>
*
* Modified to fit the APM framework by:
* Julien BERAUD <julien.beraud@parrot.com>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* 3. Neither the name PX4 nor the names of its contributors may be
* used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
****************************************************************************/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BEBOP ||\
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_MINLURE ||\
CONFIG_HAL_BOARD_SUBTYPE == HAL_BOARD_SUBTYPE_LINUX_BBBMINI
#include "Flow_PX4.h"
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
extern const AP_HAL::HAL& hal;
using namespace Linux;
Flow_PX4::Flow_PX4(uint32_t width, uint32_t bytesperline,
uint32_t max_flow_pixel,
float bottom_flow_feature_threshold,
float bottom_flow_value_threshold) :
_width(width),
_bytesperline(bytesperline),
_search_size(max_flow_pixel),
_bottom_flow_feature_threshold(bottom_flow_feature_threshold),
_bottom_flow_value_threshold(bottom_flow_value_threshold)
{
/* _pixlo is _search_size + 1 because if we need to evaluate
* the subpixels up/left of the first pixel, the index
* will be equal to _pixlo - _search_size -1
* idem if we need to evaluate the subpixels down/right
* the index will be equal to _pixhi + _search_size + 1
* which needs to remain inferior to _width - 1
*/
_pixlo = _search_size + 1;
_pixhi = _width - 1 - (_search_size + 1);
/* 1 block is of size 2*_search_size + 1 + 1 pixel on each
* side for subpixel calculation.
* So _num_blocks = _width / (2 * _search_size + 3)
*/
_num_blocks = _width / (2 * _search_size + 3);
_pixstep = ceil(((float)(_pixhi - _pixlo)) / _num_blocks);
}
/**
* @brief Compute the average pixel gradient of all horizontal and vertical
* steps
*
* @param image ...
* @param offX x coordinate of upper left corner of 8x8 pattern in image
* @param offY y coordinate of upper left corner of 8x8 pattern in image
*/
static inline uint32_t compute_diff(uint8_t *image, uint16_t offx, uint16_t offy,
uint16_t row_size, uint8_t window_size)
{
/* calculate position in image buffer */
/* we calc only the 4x4 pattern */
uint16_t off = (offy + 2) * row_size + (offx + 2);
uint32_t acc = 0;
unsigned int i;
for (i = 0; i < window_size; i++) {
/* accumulate differences between line1/2, 2/3, 3/4 for 4 pixels
* starting at offset off
*/
acc += abs(image[off + i] - image[off + i + row_size]);
acc += abs(image[off + i + row_size] - image[off + i + 2 * row_size]);
acc += abs(image[off + i + 2 * row_size] -
image[off + i + 3 * row_size]);
/* accumulate differences between col1/2, 2/3, 3/4 for 4 pixels starting
* at off
*/
acc += abs(image[off + row_size * i] - image[off + row_size * i + 1]);
acc += abs(image[off + row_size * i + 1] -
image[off + row_size * i + 2]);
acc += abs(image[off + row_size * i + 2] -
image[off + row_size * i + 3]);
}
return acc;
}
/**
* @brief Compute SAD of two pixel windows.
*
* @param image1 ...
* @param image2 ...
* @param off1X x coordinate of upper left corner of pattern in image1
* @param off1Y y coordinate of upper left corner of pattern in image1
* @param off2X x coordinate of upper left corner of pattern in image2
* @param off2Y y coordinate of upper left corner of pattern in image2
*/
static inline uint32_t compute_sad(uint8_t *image1, uint8_t *image2,
uint16_t off1x, uint16_t off1y,
uint16_t off2x, uint16_t off2y,
uint16_t row_size, uint16_t window_size)
{
/* calculate position in image buffer
* off1 for image1 and off2 for image2
*/
uint16_t off1 = off1y * row_size + off1x;
uint16_t off2 = off2y * row_size + off2x;
unsigned int i,j;
uint32_t acc = 0;
for (i = 0; i < window_size; i++) {
for (j = 0; j < window_size; j++) {
acc += abs(image1[off1 + i + j*row_size] -
image2[off2 + i + j*row_size]);
}
}
return acc;
}
/**
* @brief Compute SAD distances of subpixel shift of two pixel patterns.
*
* @param image1 ...
* @param image2 ...
* @param off1X x coordinate of upper left corner of pattern in image1
* @param off1Y y coordinate of upper left corner of pattern in image1
* @param off2X x coordinate of upper left corner of pattern in image2
* @param off2Y y coordinate of upper left corner of pattern in image2
* @param acc array to store SAD distances for shift in every direction
*/
static inline uint32_t compute_subpixel(uint8_t *image1, uint8_t *image2,
uint16_t off1x, uint16_t off1y,
uint16_t off2x, uint16_t off2y,
uint32_t *acc, uint16_t row_size,
uint16_t window_size)
{
/* calculate position in image buffer */
uint16_t off1 = off1y * row_size + off1x; // image1
uint16_t off2 = off2y * row_size + off2x; // image2
uint8_t sub[8];
uint16_t i, j, k;
memset(acc, 0, window_size * sizeof(uint32_t));
for (i = 0; i < window_size; i++) {
for (j = 0; j < window_size; j++) {
/* the 8 s values are from following positions for each pixel (X):
* + - + - + - +
* + 5 7 +
* + - + 6 + - +
* + 4 X 0 +
* + - + 2 + - +
* + 3 1 +
* + - + - + - +
*/
/* subpixel 0 is the mean value of base pixel and
* the pixel on the right, subpixel 1 is the mean
* value of base pixel, the pixel on the right,
* the pixel down from it, and the pixel down on
* the right. etc...
*/
sub[0] = (image2[off2 + i + j*row_size] +
image2[off2 + i + 1 + j*row_size])/2;
sub[1] = (image2[off2 + i + j*row_size] +
image2[off2 + i + 1 + j*row_size] +
image2[off2 + i + (j+1)*row_size] +
image2[off2 + i + 1 + (j+1)*row_size])/4;
sub[2] = (image2[off2 + i + j*row_size] +
image2[off2 + i + 1 + (j+1)*row_size])/2;
sub[3] = (image2[off2 + i + j*row_size] +
image2[off2 + i - 1 + j*row_size] +
image2[off2 + i - 1 + (j+1)*row_size] +
image2[off2 + i + (j+1)*row_size])/4;
sub[4] = (image2[off2 + i + j*row_size] +
image2[off2 + i - 1 + (j+1)*row_size])/2;
sub[5] = (image2[off2 + i + j*row_size] +
image2[off2 + i - 1 + j*row_size] +
image2[off2 + i - 1 + (j-1)*row_size] +
image2[off2 + i + (j-1)*row_size])/4;
sub[6] = (image2[off2 + i + j*row_size] +
image2[off2 + i + (j-1)*row_size])/2;
sub[7] = (image2[off2 + i + j*row_size] +
image2[off2 + i + 1 + j*row_size] +
image2[off2 + i + (j-1)*row_size] +
image2[off2 + i + 1 + (j-1)*row_size])/4;
for (k = 0; k < 8; k++) {
acc[k] += abs(image1[off1 + i + j*row_size] - sub[k]);
}
}
}
return 0;
}
uint8_t Flow_PX4::compute_flow(uint8_t *image1, uint8_t *image2,
uint32_t delta_time, float *pixel_flow_x,
float *pixel_flow_y)
{
/* constants */
const int16_t winmin = -_search_size;
const int16_t winmax = _search_size;
uint16_t i, j;
uint32_t acc[2*_search_size];
int8_t dirsx[_num_blocks*_num_blocks];
int8_t dirsy[_num_blocks*_num_blocks];
uint8_t subdirs[_num_blocks*_num_blocks];
float meanflowx = 0.0f;
float meanflowy = 0.0f;
uint16_t meancount = 0;
float histflowx = 0.0f;
float histflowy = 0.0f;
/* iterate over all patterns
*/
for (j = _pixlo; j < _pixhi; j += _pixstep) {
for (i = _pixlo; i < _pixhi; i += _pixstep) {
/* test pixel if it is suitable for flow tracking */
uint32_t diff = compute_diff(image1, i, j, (uint16_t) _bytesperline,
_search_size);
if (diff < _bottom_flow_feature_threshold) {
continue;
}
uint32_t dist = 0xFFFFFFFF; // set initial distance to "infinity"
int8_t sumx = 0;
int8_t sumy = 0;
int8_t ii, jj;
for (jj = winmin; jj <= winmax; jj++) {
for (ii = winmin; ii <= winmax; ii++) {
uint32_t temp_dist = compute_sad(image1, image2, i, j,
i + ii, j + jj,
(uint16_t)_bytesperline,
2 * _search_size);
if (temp_dist < dist) {
sumx = ii;
sumy = jj;
dist = temp_dist;
}
}
}
/* acceptance SAD distance threshhold */
if (dist < _bottom_flow_value_threshold) {
meanflowx += (float)sumx;
meanflowy += (float) sumy;
compute_subpixel(image1, image2, i, j, i + sumx, j + sumy,
acc, (uint16_t) _bytesperline,
2 * _search_size);
uint32_t mindist = dist; // best SAD until now
uint8_t mindir = 8; // direction 8 for no direction
for (uint8_t k = 0; k < 2 * _search_size; k++) {
if (acc[k] < mindist) {
// SAD becomes better in direction k
mindist = acc[k];
mindir = k;
}
}
dirsx[meancount] = sumx;
dirsy[meancount] = sumy;
subdirs[meancount] = mindir;
meancount++;
}
}
}
/* evaluate flow calculation */
if (meancount > _num_blocks * _num_blocks / 2) {
meanflowx /= meancount;
meanflowy /= meancount;
/* use average of accepted flow values */
uint32_t meancount_x = 0;
uint32_t meancount_y = 0;
for (uint16_t h = 0; h < meancount; h++) {
float subdirx = 0.0f;
if (subdirs[h] == 0 || subdirs[h] == 1 || subdirs[h] == 7) {
subdirx = 0.5f;
}
if (subdirs[h] == 3 || subdirs[h] == 4 || subdirs[h] == 5) {
subdirx = -0.5f;
}
histflowx += (float)dirsx[h] + subdirx;
meancount_x++;
float subdiry = 0.0f;
if (subdirs[h] == 5 || subdirs[h] == 6 || subdirs[h] == 7) {
subdiry = -0.5f;
}
if (subdirs[h] == 1 || subdirs[h] == 2 || subdirs[h] == 3) {
subdiry = 0.5f;
}
histflowy += (float)dirsy[h] + subdiry;
meancount_y++;
}
histflowx /= meancount_x;
histflowy /= meancount_y;
*pixel_flow_x = histflowx;
*pixel_flow_y = histflowy;
} else {
*pixel_flow_x = 0.0f;
*pixel_flow_y = 0.0f;
return 0;
}
/* calc quality */
uint8_t qual = (uint8_t)(meancount * 255 / (_num_blocks*_num_blocks));
return qual;
}
#endif