Ardupilot2/ArduSub/motors.cpp

187 lines
5.8 KiB
C++
Raw Normal View History

2016-01-14 15:30:56 -04:00
#include "Sub.h"
2017-04-05 17:25:03 -03:00
// enable_motor_output() - enable and output lowest possible value to motors
void Sub::enable_motor_output()
{
// enable motors
motors.enable();
motors.output_min();
}
// init_arm_motors - performs arming process including initialisation of barometer and gyros
// returns false if arming failed because of pre-arm checks, arming checks or a gyro calibration failure
2016-01-14 15:30:56 -04:00
bool Sub::init_arm_motors(bool arming_from_gcs)
{
start_logging();
static bool in_arm_motors = false;
// exit immediately if already in this function
if (in_arm_motors) {
return false;
}
in_arm_motors = true;
if (!arming.pre_arm_checks(true)) {
AP_Notify::events.arming_failed = true;
in_arm_motors = false;
return false;
}
// let dataflash know that we're armed (it may open logs e.g.)
DataFlash_Class::instance()->set_vehicle_armed(true);
// disable cpu failsafe because initialising everything takes a while
mainloop_failsafe_disable();
// notify that arming will occur (we do this early to give plenty of warning)
AP_Notify::flags.armed = true;
// call update_notify a few times to ensure the message gets out
for (uint8_t i=0; i<=10; i++) {
update_notify();
}
2017-04-05 19:14:40 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Arming motors");
#endif
initial_armed_bearing = ahrs.yaw_sensor;
if (ap.home_state == HOME_UNSET) {
// Reset EKF altitude if home hasn't been set yet (we use EKF altitude as substitute for alt above home)
// Always use absolute altitude for ROV
// ahrs.resetHeightDatum();
// Log_Write_Event(DATA_EKF_ALT_RESET);
} else if (ap.home_state == HOME_SET_NOT_LOCKED) {
// Reset home position if it has already been set before (but not locked)
set_home_to_current_location(false);
}
// enable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(true);
hal.util->set_soft_armed(true);
// enable output to motors
enable_motor_output();
// finally actually arm the motors
motors.armed(true);
// log arming to dataflash
Log_Write_Event(DATA_ARMED);
// log flight mode in case it was changed while vehicle was disarmed
2016-04-18 01:38:21 -03:00
DataFlash.Log_Write_Mode(control_mode, control_mode_reason);
// reenable failsafe
mainloop_failsafe_enable();
// perf monitor ignores delay due to arming
perf_ignore_this_loop();
// flag exiting this function
in_arm_motors = false;
// return success
return true;
}
// init_disarm_motors - disarm motors
2016-01-14 15:30:56 -04:00
void Sub::init_disarm_motors()
{
// return immediately if we are already disarmed
if (!motors.armed()) {
return;
}
2017-04-05 19:14:40 -03:00
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
gcs().send_text(MAV_SEVERITY_INFO, "Disarming motors");
#endif
2016-05-03 01:45:37 -03:00
// save compass offsets learned by the EKF if enabled
if (ahrs.use_compass() && compass.get_learn_type() == Compass::LEARN_EKF) {
for (uint8_t i=0; i<COMPASS_MAX_INSTANCES; i++) {
2016-04-21 20:06:15 -03:00
Vector3f magOffsets;
if (ahrs.getMagOffsets(i, magOffsets)) {
compass.set_and_save_offsets(i, magOffsets);
}
}
}
// log disarm to the dataflash
Log_Write_Event(DATA_DISARMED);
// send disarm command to motors
motors.armed(false);
// reset the mission
mission.reset();
DataFlash_Class::instance()->set_vehicle_armed(false);
// disable gps velocity based centrefugal force compensation
ahrs.set_correct_centrifugal(false);
hal.util->set_soft_armed(false);
}
// motors_output - send output to motors library which will adjust and send to ESCs and servos
2016-01-14 15:30:56 -04:00
void Sub::motors_output()
{
// check if we are performing the motor test
if (ap.motor_test) {
return; // Placeholder
}
motors.set_interlock(true);
motors.output();
}
// translate wpnav roll/pitch outputs to lateral/forward
void Sub::translate_wpnav_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = wp_nav.get_roll();
int32_t forward = -wp_nav.get_pitch(); // output is reversed
// constrain target forward/lateral values
// The outputs of wp_nav.get_roll and get_pitch should already be constrained to these values
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}
2017-03-04 15:41:26 -04:00
// translate wpnav roll/pitch outputs to lateral/forward
void Sub::translate_circle_nav_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = circle_nav.get_roll();
int32_t forward = -circle_nav.get_pitch(); // output is reversed
// constrain target forward/lateral values
2017-03-06 22:29:03 -04:00
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}
// translate pos_control roll/pitch outputs to lateral/forward
void Sub::translate_pos_control_rp(float &lateral_out, float &forward_out)
{
// get roll and pitch targets in centidegrees
int32_t lateral = pos_control.get_roll();
int32_t forward = -pos_control.get_pitch(); // output is reversed
// constrain target forward/lateral values
2017-03-04 15:41:26 -04:00
lateral = constrain_int16(lateral, -aparm.angle_max, aparm.angle_max);
forward = constrain_int16(forward, -aparm.angle_max, aparm.angle_max);
// Normalize
lateral_out = (float)lateral/(float)aparm.angle_max;
forward_out = (float)forward/(float)aparm.angle_max;
}