Ardupilot2/libraries/AP_Math/matrix3.cpp

218 lines
7.9 KiB
C++
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
* matrix3.cpp
* Copyright (C) Andrew Tridgell 2012
*
* This file is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This file is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "AP_Math.h"
#define HALF_SQRT_2 0.70710678118654757
#define MATRIX_ROTATION_NONE Matrix3f(1, 0, 0, 0, 1, 0, 0,0, 1)
#define MATRIX_ROTATION_YAW_45 Matrix3f(HALF_SQRT_2, -HALF_SQRT_2, 0, HALF_SQRT_2, HALF_SQRT_2, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_90 Matrix3f(0, -1, 0, 1, 0, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_135 Matrix3f(-HALF_SQRT_2, -HALF_SQRT_2, 0, HALF_SQRT_2, -HALF_SQRT_2, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_180 Matrix3f(-1, 0, 0, 0, -1, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_225 Matrix3f(-HALF_SQRT_2, HALF_SQRT_2, 0, -HALF_SQRT_2, -HALF_SQRT_2, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_270 Matrix3f(0, 1, 0, -1, 0, 0, 0, 0, 1)
#define MATRIX_ROTATION_YAW_315 Matrix3f(HALF_SQRT_2, HALF_SQRT_2, 0, -HALF_SQRT_2, HALF_SQRT_2, 0, 0, 0, 1)
#define MATRIX_ROTATION_ROLL_180 Matrix3f(1, 0, 0, 0, -1, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_45 Matrix3f(HALF_SQRT_2, HALF_SQRT_2, 0, HALF_SQRT_2, -HALF_SQRT_2, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_90 Matrix3f(0, 1, 0, 1, 0, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_135 Matrix3f(-HALF_SQRT_2, HALF_SQRT_2, 0, HALF_SQRT_2, HALF_SQRT_2, 0, 0, 0, -1)
#define MATRIX_ROTATION_PITCH_180 Matrix3f(-1, 0, 0, 0, 1, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_225 Matrix3f(-HALF_SQRT_2, -HALF_SQRT_2, 0, -HALF_SQRT_2, HALF_SQRT_2, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_270 Matrix3f(0, -1, 0, -1, 0, 0, 0, 0, -1)
#define MATRIX_ROTATION_ROLL_180_YAW_315 Matrix3f(HALF_SQRT_2, -HALF_SQRT_2, 0, -HALF_SQRT_2, -HALF_SQRT_2, 0, 0, 0, -1)
// fill in a matrix with a standard rotation
template <typename T>
void Matrix3<T>::rotation(enum Rotation r)
{
switch (r) {
case ROTATION_NONE:
case ROTATION_MAX:
*this = MATRIX_ROTATION_NONE;
break;
case ROTATION_YAW_45:
*this = MATRIX_ROTATION_YAW_45;
break;
case ROTATION_YAW_90:
*this = MATRIX_ROTATION_YAW_90;
break;
case ROTATION_YAW_135:
*this = MATRIX_ROTATION_YAW_135;
break;
case ROTATION_YAW_180:
*this = MATRIX_ROTATION_YAW_180;
break;
case ROTATION_YAW_225:
*this = MATRIX_ROTATION_YAW_225;
break;
case ROTATION_YAW_270:
*this = MATRIX_ROTATION_YAW_270;
break;
case ROTATION_YAW_315:
*this = MATRIX_ROTATION_YAW_315;
break;
case ROTATION_ROLL_180:
*this = MATRIX_ROTATION_ROLL_180;
break;
case ROTATION_ROLL_180_YAW_45:
*this = MATRIX_ROTATION_ROLL_180_YAW_45;
break;
case ROTATION_ROLL_180_YAW_90:
*this = MATRIX_ROTATION_ROLL_180_YAW_90;
break;
case ROTATION_ROLL_180_YAW_135:
*this = MATRIX_ROTATION_ROLL_180_YAW_135;
break;
case ROTATION_PITCH_180:
*this = MATRIX_ROTATION_PITCH_180;
break;
case ROTATION_ROLL_180_YAW_225:
*this = MATRIX_ROTATION_ROLL_180_YAW_225;
break;
case ROTATION_ROLL_180_YAW_270:
*this = MATRIX_ROTATION_ROLL_180_YAW_270;
break;
case ROTATION_ROLL_180_YAW_315:
*this = MATRIX_ROTATION_ROLL_180_YAW_315;
break;
}
}
// create a rotation matrix given some euler angles
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template <typename T>
void Matrix3<T>::from_euler(float roll, float pitch, float yaw)
{
float cp = cos(pitch);
float sp = sin(pitch);
float sr = sin(roll);
float cr = cos(roll);
float sy = sin(yaw);
float cy = cos(yaw);
a.x = cp * cy;
a.y = (sr * sp * cy) - (cr * sy);
a.z = (cr * sp * cy) + (sr * sy);
b.x = cp * sy;
b.y = (sr * sp * sy) + (cr * cy);
b.z = (cr * sp * sy) - (sr * cy);
c.x = -sp;
c.y = sr * cp;
c.z = cr * cp;
}
// calculate euler angles from a rotation matrix
// this is based on http://gentlenav.googlecode.com/files/EulerAngles.pdf
template <typename T>
void Matrix3<T>::to_euler(float *roll, float *pitch, float *yaw)
{
if (pitch != NULL) {
*pitch = -safe_asin(c.x);
}
if (roll != NULL) {
*roll = atan2(c.y, c.z);
}
if (yaw != NULL) {
*yaw = atan2(b.x, a.x);
}
}
// apply an additional rotation from a body frame gyro vector
// to a rotation matrix.
template <typename T>
void Matrix3<T>::rotate(const Vector3<T> &g)
{
Matrix3f temp_matrix;
temp_matrix.a.x = a.y * g.z - a.z * g.y;
temp_matrix.a.y = a.z * g.x - a.x * g.z;
temp_matrix.a.z = a.x * g.y - a.y * g.x;
temp_matrix.b.x = b.y * g.z - b.z * g.y;
temp_matrix.b.y = b.z * g.x - b.x * g.z;
temp_matrix.b.z = b.x * g.y - b.y * g.x;
temp_matrix.c.x = c.y * g.z - c.z * g.y;
temp_matrix.c.y = c.z * g.x - c.x * g.z;
temp_matrix.c.z = c.x * g.y - c.y * g.x;
(*this) += temp_matrix;
}
// multiplication by a vector
template <typename T>
Vector3<T> Matrix3<T>::operator *(const Vector3<T> &v) const
{
return Vector3<T>(a.x * v.x + a.y * v.y + a.z * v.z,
b.x * v.x + b.y * v.y + b.z * v.z,
c.x * v.x + c.y * v.y + c.z * v.z);
}
// multiplication of transpose by a vector
template <typename T>
Vector3<T> Matrix3<T>::mul_transpose(const Vector3<T> &v) const
{
return Vector3<T>(a.x * v.x + b.x * v.y + c.x * v.z,
a.y * v.x + b.y * v.y + c.y * v.z,
a.z * v.x + b.z * v.y + c.z * v.z);
}
// multiplication by another Matrix3<T>
template <typename T>
Matrix3<T> Matrix3<T>::operator *(const Matrix3<T> &m) const
{
Matrix3<T> temp (Vector3<T>(a.x * m.a.x + a.y * m.b.x + a.z * m.c.x,
a.x * m.a.y + a.y * m.b.y + a.z * m.c.y,
a.x * m.a.z + a.y * m.b.z + a.z * m.c.z),
Vector3<T>(b.x * m.a.x + b.y * m.b.x + b.z * m.c.x,
b.x * m.a.y + b.y * m.b.y + b.z * m.c.y,
b.x * m.a.z + b.y * m.b.z + b.z * m.c.z),
Vector3<T>(c.x * m.a.x + c.y * m.b.x + c.z * m.c.x,
c.x * m.a.y + c.y * m.b.y + c.z * m.c.y,
c.x * m.a.z + c.y * m.b.z + c.z * m.c.z));
return temp;
}
template <typename T>
Matrix3<T> Matrix3<T>::transposed(void) const
{
return Matrix3<T>(Vector3<T>(a.x, b.x, c.x),
Vector3<T>(a.y, b.y, c.y),
Vector3<T>(a.z, b.z, c.z));
}
template <typename T>
void Matrix3<T>::zero(void)
{
a.x = a.y = a.z = 0;
b.x = b.y = b.z = 0;
c.x = c.y = c.z = 0;
}
// only define for float
template void Matrix3<float>::rotation(enum Rotation);
template void Matrix3<float>::zero(void);
template void Matrix3<float>::rotate(const Vector3<float> &g);
template void Matrix3<float>::from_euler(float roll, float pitch, float yaw);
template void Matrix3<float>::to_euler(float *roll, float *pitch, float *yaw);
template Vector3<float> Matrix3<float>::operator *(const Vector3<float> &v) const;
template Vector3<float> Matrix3<float>::mul_transpose(const Vector3<float> &v) const;
template Matrix3<float> Matrix3<float>::operator *(const Matrix3<float> &m) const;
template Matrix3<float> Matrix3<float>::transposed(void) const;