Ardupilot2/ArduPlane/sensors.pde

127 lines
3.9 KiB
Plaintext
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
// Sensors are not available in HIL_MODE_ATTITUDE
#if HIL_MODE != HIL_MODE_ATTITUDE
void ReadSCP1000(void) {}
static void init_barometer(void)
{
int flashcount = 0;
long ground_pressure = 0;
int ground_temperature;
while (ground_pressure == 0 || !barometer.healthy) {
2011-12-09 03:41:55 -04:00
barometer.read(); // Get initial data from absolute pressure sensor
ground_pressure = barometer.get_pressure();
ground_temperature = barometer.get_temperature();
mavlink_delay(20);
2011-12-09 03:41:55 -04:00
//Serial.printf("barometer.Press %ld\n", barometer.get_pressure());
}
for(int i = 0; i < 30; i++){ // We take some readings...
#if HIL_MODE == HIL_MODE_SENSORS
gcs_update(); // look for inbound hil packets
#endif
do {
barometer.read(); // Get pressure sensor
} while (!barometer.healthy);
2011-12-09 03:41:55 -04:00
ground_pressure = (ground_pressure * 9l + barometer.get_pressure()) / 10l;
ground_temperature = (ground_temperature * 9 + barometer.get_temperature()) / 10;
mavlink_delay(20);
if(flashcount == 5) {
digitalWrite(C_LED_PIN, LED_OFF);
digitalWrite(A_LED_PIN, LED_ON);
digitalWrite(B_LED_PIN, LED_OFF);
}
if(flashcount >= 10) {
flashcount = 0;
digitalWrite(C_LED_PIN, LED_ON);
digitalWrite(A_LED_PIN, LED_OFF);
digitalWrite(B_LED_PIN, LED_ON);
}
flashcount++;
}
g.ground_pressure.set_and_save(ground_pressure);
g.ground_temperature.set_and_save(ground_temperature / 10.0f);
abs_pressure = ground_pressure;
Serial.printf_P(PSTR("abs_pressure %ld\n"), abs_pressure);
gcs_send_text_P(SEVERITY_MEDIUM, PSTR("barometer calibration complete."));
}
static long read_barometer(void)
{
float x, scaling, temp;
2011-12-09 03:41:55 -04:00
barometer.read(); // Get new data from absolute pressure sensor
2011-12-09 03:41:55 -04:00
//abs_pressure = (abs_pressure + barometer.get_pressure()) >> 1; // Small filtering
abs_pressure = ((float)abs_pressure * .7) + ((float)barometer.get_pressure() * .3); // large filtering
scaling = (float)g.ground_pressure / (float)abs_pressure;
temp = ((float)g.ground_temperature) + 273.15f;
x = log(scaling) * temp * 29271.267f;
return (x / 10);
}
// in M/S * 100
static void read_airspeed(void)
{
#if GPS_PROTOCOL != GPS_PROTOCOL_IMU // Xplane will supply the airspeed
if (g.airspeed_offset == 0) {
// runtime enabling of airspeed, we need to do instant
// calibration before we can use it. This isn't as
// accurate as the 50 point average in zero_airspeed(),
// but it is better than using it uncalibrated
airspeed_raw = pitot_analog_source.read();
g.airspeed_offset.set_and_save(airspeed_raw);
}
airspeed_raw = (pitot_analog_source.read() * 0.1) + (airspeed_raw * 0.9);
airspeed_pressure = max((airspeed_raw - g.airspeed_offset), 0);
airspeed = sqrt(airspeed_pressure * g.airspeed_ratio) * 100;
#endif
calc_airspeed_errors();
}
static void zero_airspeed(void)
{
float sum = 0;
int c;
airspeed_raw = pitot_analog_source.read();
for(c = 0; c < 250; c++) {
delay(2);
sum += pitot_analog_source.read();
}
sum /= c;
g.airspeed_offset.set_and_save((int16_t)sum);
}
#endif // HIL_MODE != HIL_MODE_ATTITUDE
static void read_battery(void)
{
if(g.battery_monitoring == 0) {
battery_voltage1 = 0;
return;
}
if(g.battery_monitoring == 3 || g.battery_monitoring == 4)
battery_voltage1 = BATTERY_VOLTAGE(analogRead(BATTERY_PIN_1)) * .1 + battery_voltage1 * .9;
if(g.battery_monitoring == 4) {
current_amps1 = CURRENT_AMPS(analogRead(CURRENT_PIN_1)) * .1 + current_amps1 * .9; //reads power sensor current pin
current_total1 += current_amps1 * (float)delta_ms_medium_loop * 0.0002778; // .0002778 is 1/3600 (conversion to hours)
}
#if BATTERY_EVENT == ENABLED
if(battery_voltage1 < LOW_VOLTAGE) low_battery_event();
if(g.battery_monitoring == 4 && current_total1 > g.pack_capacity) low_battery_event();
#endif
}