Ardupilot2/libraries/AP_HAL_F4Light/UARTDriver.cpp

166 lines
4.2 KiB
C++
Raw Normal View History

/*
* UARTDriver.cpp --- AP_HAL_F4Light UART driver.
(c) 2017 night_ghost@ykoctpa.ru
based on:
* UART driver
* Copyright (C) 2013, Virtualrobotix.com Roberto Navoni , Emile
* All Rights Reserved.
*
* This software is released under the "BSD3" license. Read the file
* "LICENSE" for more information.
*/
#pragma GCC optimize ("O2")
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT
#include "UARTDriver.h"
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <fcntl.h>
#include <usb.h>
#include <usart.h>
#include <gpio_hal.h>
#include <AP_Param_Helper/AP_Param_Helper.h>
using namespace F4Light;
UARTDriver::UARTDriver(const struct usart_dev *usart):
_usart_device(usart),
_initialized(false),
_blocking(true)
{
}
//uint8_t mode = (UART_Parity_No <<16) | UART_Stop_Bits_1
void UARTDriver::begin(uint32_t baud, uint32_t bmode) {
if(!_usart_device) return;
#ifdef BOARD_SBUS_UART
if(_initialized && hal_param_helper->_uart_sbus && _usart_device==UARTS[hal_param_helper->_uart_sbus]) return; //already used as SBUS
#endif
_baudrate = baud;
uint32_t mode=0;
if(_usart_device->tx_pin < BOARD_NR_GPIO_PINS){
const stm32_pin_info *txi = &PIN_MAP[_usart_device->tx_pin];
gpio_set_af_mode(txi->gpio_device, txi->gpio_bit, _usart_device->gpio_af);
gpio_set_mode(txi->gpio_device, txi->gpio_bit, GPIO_AF_OUTPUT_PP);
mode |= USART_Mode_Tx;
}
if(_usart_device->rx_pin < BOARD_NR_GPIO_PINS){
const stm32_pin_info *rxi = &PIN_MAP[_usart_device->rx_pin];
gpio_set_af_mode(rxi->gpio_device, rxi->gpio_bit, _usart_device->gpio_af);
gpio_set_mode(rxi->gpio_device, rxi->gpio_bit, GPIO_AF_OUTPUT_OD_PU);
mode |= USART_Mode_Rx;
}
if(!mode) return;
usart_disable(_usart_device);
usart_init(_usart_device);
usart_setup(_usart_device, (uint32_t)baud,
UART_Word_8b, bmode & 0xffff /*USART_StopBits_1*/ , (bmode>>16) & 0xffff /* USART_Parity_No*/, mode, UART_HardwareFlowControl_None);
usart_enable(_usart_device);
usart_set_callback(_usart_device, Scheduler::get_handler(FUNCTOR_BIND_MEMBER(&UARTDriver::update_timestamp, void)) );
_initialized = true;
}
void UARTDriver::flush() {
if (!_initialized) {
return;
}
usart_reset_rx(_usart_device);
usart_reset_tx(_usart_device);
}
uint32_t UARTDriver::available() {
if (!_initialized) {
return 0;
}
uint16_t v=usart_data_available(_usart_device);
return v;
}
int16_t UARTDriver::read() {
if (available() == 0) {
return -1;
}
return usart_getc(_usart_device);
}
size_t UARTDriver::write(uint8_t c) {
if (!_initialized) {
return 0;
}
uint16_t n;
uint16_t tr=2; // попытки
while(tr) {
n = usart_putc(_usart_device, c);
if(n==0) { // no place for character
hal_yield(0);
if(!_blocking) tr--; // in unlocking mode we reduce the retry count
} else break; // sent!
}
return n;
}
size_t UARTDriver::write(const uint8_t *buffer, size_t size)
{
uint16_t tr=2; // tries
uint16_t n;
uint16_t sent=0;
while(tr && size) {
n = usart_tx(_usart_device, buffer, size);
if(n<size) { // no place for character
hal_yield(0);
if(!_blocking) tr--; // in unlocking mode we reduce the retry count
} else break; // sent
buffer+=n;
sent+=n;
size-=n;
}
return sent;
}
void UARTDriver::update_timestamp(){ // called from ISR
_time_idx ^= 1;
_receive_timestamp[_time_idx] = AP_HAL::micros();
}
// this is mostly a
uint64_t UARTDriver::receive_time_constraint_us(uint16_t nbytes) {
// timestamp is 32 bits so read is atomic, in worst case we get 2nd timestamp
uint32_t time_from_last_byte = AP_HAL::micros() - _receive_timestamp[_time_idx];
uint32_t transport_time_us = 0;
if (_baudrate > 0) {
// assume 10 bits per byte
transport_time_us = (1000000UL * 10UL / _baudrate) * (nbytes+available());
}
return AP_HAL::micros64() - (time_from_last_byte + transport_time_us);
}
#endif // CONFIG_HAL_BOARD