Ardupilot2/libraries/Filter/SlewLimiter.cpp

139 lines
5.6 KiB
C++
Raw Normal View History

2020-09-19 19:03:36 -03:00
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
The SlewLimiter filter provides an actuator slew rate limiter for
PID controllers. It is used to reduce the P and D gains when the
filter detects that the P+D components are pushing the actuator
beyond the configured actuator rate limit. This can prevent
oscillations that are caused by the output actuation rate going
beyond the actuator maximum physical rate, which causes the
actuation demand and achieved rate to get out of phase.
this filter was originally written by Paul Riseborough for fixed
wing use. It was adapted for wider use in AC_PID by Andrew Tridgell
*/
#include "SlewLimiter.h"
#define WINDOW_MS 300 // time in msec required for a half cycle of the slowest oscillation frequency expected
#define MODIFIER_GAIN 1.5f // ratio of modifier reduction to slew rate exceedance ratio
#define DERIVATIVE_CUTOFF_FREQ 25.0f
2020-09-19 19:03:36 -03:00
SlewLimiter::SlewLimiter(const float &_slew_rate_max, const float &_slew_rate_tau) :
slew_rate_max(_slew_rate_max),
slew_rate_tau(_slew_rate_tau)
{
slew_filter.set_cutoff_frequency(DERIVATIVE_CUTOFF_FREQ);
2020-09-19 19:03:36 -03:00
slew_filter.reset(0.0);
}
/*
apply filter to sample, returning multiplier between 0 and 1 to keep
output within slew rate
*/
float SlewLimiter::modifier(float sample, float dt)
{
2022-12-05 02:18:51 -04:00
if (!is_positive(dt)) {
return 1.0;
}
2020-09-19 19:03:36 -03:00
// Calculate a low pass filtered slew rate
const float slew_rate = slew_filter.apply((sample - last_sample) / dt, dt);
last_sample = sample;
2020-09-19 19:03:36 -03:00
uint32_t now_ms = AP_HAL::millis();
// Apply a filter to decay maximum seen slew rate once the value had left the window period
const float decay_alpha = fminf(dt, slew_rate_tau) / slew_rate_tau;
// Apply a filter to increases in slew rate only to reduce the effect of gusts and large controller setpoint changes
const float attack_alpha = fminf(2.0f * decay_alpha, 1.0f);
// Decay the peak positive and negative slew rate if they are outside the window
// Never drop PID gains below 10% of configured value
if (slew_rate > _max_pos_slew_rate) {
_max_pos_slew_rate = slew_rate;
_max_pos_slew_event_ms = now_ms;
} else if (now_ms - _max_pos_slew_event_ms > WINDOW_MS) {
_max_pos_slew_rate *= (1.0f - decay_alpha);
}
if (-slew_rate > _max_neg_slew_rate) {
_max_neg_slew_rate = -slew_rate;
_max_neg_slew_event_ms = now_ms;
} else if (now_ms - _max_neg_slew_event_ms > WINDOW_MS) {
_max_neg_slew_rate *= (1.0f - decay_alpha);
}
const float raw_slew_rate = 0.5f*(_max_pos_slew_rate + _max_neg_slew_rate);
_output_slew_rate = (1.0f - attack_alpha) * _output_slew_rate + attack_alpha * raw_slew_rate;
_output_slew_rate = fminf(_output_slew_rate, raw_slew_rate);
if (slew_rate_max <= 0) {
return 1.0;
}
// Constrain slew rate used for calculation
const float limited_raw_slew_rate = 0.5f*(fminf(_max_pos_slew_rate, 10.0f * slew_rate_max) + fminf(_max_neg_slew_rate, 10.0f * slew_rate_max));
// Store a series of positive slew rate exceedance events
if (!_pos_event_stored && slew_rate > slew_rate_max) {
if (_pos_event_index >= SLEWLIMITER_N_EVENTS) {
_pos_event_index = 0;
}
_pos_event_ms[_pos_event_index] = now_ms;
_pos_event_index++;
_pos_event_stored = true;
_neg_event_stored = false;
}
// Store a series of negative slew rate exceedance events
if (!_neg_event_stored && -slew_rate > slew_rate_max) {
if (_neg_event_index >= SLEWLIMITER_N_EVENTS) {
_neg_event_index = 0;
}
_neg_event_ms[_neg_event_index] = now_ms;
_neg_event_index++;
_neg_event_stored = true;
_pos_event_stored = false;
}
// Find the oldest event time
uint32_t oldest_ms = now_ms;
for (uint8_t index = 0; index < SLEWLIMITER_N_EVENTS; index++) {
oldest_ms = MIN(oldest_ms, _pos_event_ms[index]);
oldest_ms = MIN(oldest_ms, _neg_event_ms[index]);
}
// Apply a further reduction when the oldest exceedance event falls outside the window required for the
// specified number of exceedance events. This prevents spikes due to control mode changed, etc causing
// unwanted gain reduction and is only applied to the slew rate used for gain reduction
float modifier_input = limited_raw_slew_rate;
if (now_ms - oldest_ms > (SLEWLIMITER_N_EVENTS + 1) * WINDOW_MS) {
const float oldest_time_from_window = 0.001f*(float)(now_ms - oldest_ms - (SLEWLIMITER_N_EVENTS + 1) * WINDOW_MS);
modifier_input *= expf(-oldest_time_from_window / slew_rate_tau);
}
2020-09-19 19:03:36 -03:00
_modifier_slew_rate = (1.0f - attack_alpha) * _modifier_slew_rate + attack_alpha * modifier_input;
_modifier_slew_rate = fminf(_modifier_slew_rate, modifier_input);
2020-09-19 19:03:36 -03:00
// Calculate the gain adjustment
float mod = 1.0f;
if (_modifier_slew_rate > slew_rate_max) {
mod = slew_rate_max / (slew_rate_max + MODIFIER_GAIN * (_modifier_slew_rate - slew_rate_max));
}
2020-09-19 19:03:36 -03:00
return mod;
}