Ardupilot2/libraries/AP_RTC/AP_RTC.cpp

217 lines
5.9 KiB
C++
Raw Normal View History

2018-04-10 08:43:03 -03:00
#include "AP_RTC.h"
#include <AP_HAL/AP_HAL.h>
#include <AP_Math/AP_Math.h>
#include <GCS_MAVLink/GCS.h>
extern const AP_HAL::HAL& hal;
AP_RTC::AP_RTC()
{
AP_Param::setup_object_defaults(this, var_info);
if (_singleton != nullptr) {
// it's an error to get here. But I don't want to include
// AP_HAL here
return;
}
_singleton = this;
}
// table of user settable parameters
const AP_Param::GroupInfo AP_RTC::var_info[] = {
// @Param: _TYPES
// @DisplayName: Allowed sources of RTC time
// @Description: Specifies which sources of UTC time will be accepted
// @Bitmask: 0:GPS,1:MAVLINK_SYSTEM_TIME,2:HW
// @User: Advanced
AP_GROUPINFO("_TYPES", 1, AP_RTC, allowed_types, 1),
2019-10-07 03:46:25 -03:00
// @Param: _TZ_MIN
// @DisplayName: Timezone offset from UTC
// @Description: Adds offset in +- minutes from UTC to calculate local time
// @Range: -720 +840
// @User: Advanced
AP_GROUPINFO("_TZ_MIN", 2, AP_RTC, tz_min, 0),
AP_GROUPEND
};
2018-04-10 08:43:03 -03:00
void AP_RTC::set_utc_usec(uint64_t time_utc_usec, source_type type)
{
const uint64_t oldest_acceptable_date = 1546300800000; // 2019-01-01 0:00
2018-04-10 08:43:03 -03:00
if (type >= rtc_source_type) {
// e.g. system-time message when we've been set by the GPS
return;
}
// check it's from an allowed sources:
if (!(allowed_types & (1<<type))) {
return;
}
// don't allow old times
if (time_utc_usec < oldest_acceptable_date) {
return;
}
2018-04-10 08:43:03 -03:00
const uint64_t now = AP_HAL::micros64();
const int64_t tmp = int64_t(time_utc_usec) - int64_t(now);
if (tmp < rtc_shift) {
// can't allow time to go backwards, ever
return;
}
2020-01-03 20:05:51 -04:00
WITH_SEMAPHORE(rsem);
2018-04-10 08:43:03 -03:00
rtc_shift = tmp;
// update hardware clock:
if (type != SOURCE_HW) {
hal.util->set_hw_rtc(time_utc_usec);
}
rtc_source_type = type;
// update signing timestamp
GCS_MAVLINK::update_signing_timestamp(time_utc_usec);
}
bool AP_RTC::get_utc_usec(uint64_t &usec) const
{
if (rtc_source_type == SOURCE_NONE) {
return false;
}
usec = AP_HAL::micros64() + rtc_shift;
return true;
}
bool AP_RTC::get_system_clock_utc(uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms)
2018-04-10 08:43:03 -03:00
{
// get time of day in ms
uint64_t time_ms = 0;
if (!get_utc_usec(time_ms)) {
return false;
}
2018-04-10 08:43:03 -03:00
time_ms /= 1000U;
// separate time into ms, sec, min, hour and days but all expressed in milliseconds
ms = time_ms % 1000;
uint32_t sec_ms = (time_ms % (60 * 1000)) - ms;
uint32_t min_ms = (time_ms % (60 * 60 * 1000)) - sec_ms - ms;
uint32_t hour_ms = (time_ms % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms;
// convert times as milliseconds into appropriate units
sec = sec_ms / 1000;
min = min_ms / (60 * 1000);
hour = hour_ms / (60 * 60 * 1000);
return true;
2018-04-10 08:43:03 -03:00
}
2019-10-07 03:46:25 -03:00
bool AP_RTC::get_local_time(uint8_t &hour, uint8_t &min, uint8_t &sec, uint16_t &ms)
{
// get local time of day in ms
uint64_t time_ms = 0;
uint64_t ms_local = 0;
if (!get_utc_usec(time_ms)) {
return false;
}
time_ms /= 1000U;
ms_local = time_ms + (tz_min * 60000);
// separate time into ms, sec, min, hour and days but all expressed in milliseconds
ms = ms_local % 1000;
uint32_t sec_ms = (ms_local % (60 * 1000)) - ms;
uint32_t min_ms = (ms_local % (60 * 60 * 1000)) - sec_ms - ms;
uint32_t hour_ms = (ms_local % (24 * 60 * 60 * 1000)) - min_ms - sec_ms - ms;
// convert times as milliseconds into appropriate units
sec = sec_ms / 1000;
min = min_ms / (60 * 1000);
hour = hour_ms / (60 * 60 * 1000);
return true;
}
// get milliseconds from now to a target time of day expressed as
// hour, min, sec, ms. Match starts from first value that is not
// -1. I.e. specifying hour=-1, minutes=10 will ignore the hour and
// return time until 10 minutes past 12am (utc) NOTE: if this time has
// just past then you can expect a return value of roughly 86340000 -
// the number of milliseconds in a day.
2018-04-10 08:43:03 -03:00
uint32_t AP_RTC::get_time_utc(int32_t hour, int32_t min, int32_t sec, int32_t ms)
{
// determine highest value specified (0=none, 1=ms, 2=sec, 3=min, 4=hour)
int8_t largest_element = 0;
if (hour != -1) {
largest_element = 4;
} else if (min != -1) {
largest_element = 3;
} else if (sec != -1) {
largest_element = 2;
} else if (ms != -1) {
largest_element = 1;
} else {
// exit immediately if no time specified
return 0;
}
// get start_time_ms as h, m, s, ms
uint8_t curr_hour, curr_min, curr_sec;
uint16_t curr_ms;
if (!get_system_clock_utc(curr_hour, curr_min, curr_sec, curr_ms)) {
return 0;
}
2018-04-10 08:43:03 -03:00
int32_t total_delay_ms = 0;
// calculate ms to target
if (largest_element >= 1) {
total_delay_ms += ms - curr_ms;
}
if (largest_element == 1 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms += 1000);
}
// calculate sec to target
if (largest_element >= 2) {
total_delay_ms += (sec - curr_sec)*1000;
}
if (largest_element == 2 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms += (60*1000));
}
// calculate min to target
if (largest_element >= 3) {
total_delay_ms += (min - curr_min)*60*1000;
}
if (largest_element == 3 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms += (60*60*1000));
}
// calculate hours to target
if (largest_element >= 4) {
total_delay_ms += (hour - curr_hour)*60*60*1000;
}
if (largest_element == 4 && total_delay_ms < 0) {
return static_cast<uint32_t>(total_delay_ms += (24*60*60*1000));
}
// total delay in milliseconds
return static_cast<uint32_t>(total_delay_ms);
}
// singleton instance
AP_RTC *AP_RTC::_singleton;
namespace AP {
AP_RTC &rtc()
{
return *AP_RTC::get_singleton();
}
}