Ardupilot2/ArduSub/system.cpp

441 lines
12 KiB
C++
Raw Normal View History

// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
2016-01-14 15:30:56 -04:00
#include "Sub.h"
/*****************************************************************************
* The init_ardupilot function processes everything we need for an in - air restart
* We will determine later if we are actually on the ground and process a
* ground start in that case.
*
*****************************************************************************/
#if CLI_ENABLED == ENABLED
// This is the help function
2016-01-14 15:30:56 -04:00
int8_t Sub::main_menu_help(uint8_t argc, const Menu::arg *argv)
{
cliSerial->printf("Commands:\n"
" logs\n"
" setup\n"
" test\n"
" reboot\n"
"\n");
return(0);
}
// Command/function table for the top-level menu.
const struct Menu::command main_menu_commands[] = {
// command function called
// ======= ===============
{"logs", MENU_FUNC(process_logs)},
{"setup", MENU_FUNC(setup_mode)},
{"test", MENU_FUNC(test_mode)},
{"reboot", MENU_FUNC(reboot_board)},
{"help", MENU_FUNC(main_menu_help)},
};
// Create the top-level menu object.
MENU(main_menu, THISFIRMWARE, main_menu_commands);
2016-01-14 15:30:56 -04:00
int8_t Sub::reboot_board(uint8_t argc, const Menu::arg *argv)
{
hal.scheduler->reboot(false);
return 0;
}
// the user wants the CLI. It never exits
2016-01-14 15:30:56 -04:00
void Sub::run_cli(AP_HAL::UARTDriver *port)
{
cliSerial = port;
Menu::set_port(port);
port->set_blocking_writes(true);
// disable the mavlink delay callback
hal.scheduler->register_delay_callback(NULL, 5);
// disable main_loop failsafe
failsafe_disable();
// cut the engines
if(motors.armed()) {
motors.armed(false);
motors.output();
}
while (1) {
main_menu.run();
}
}
#endif // CLI_ENABLED
static void mavlink_delay_cb_static()
{
2016-01-14 15:30:56 -04:00
sub.mavlink_delay_cb();
}
static void failsafe_check_static()
{
2016-01-14 15:30:56 -04:00
sub.failsafe_check();
}
2016-01-14 15:30:56 -04:00
void Sub::init_ardupilot()
{
if (!hal.gpio->usb_connected()) {
// USB is not connected, this means UART0 may be a Xbee, with
// its darned bricking problem. We can't write to it for at
// least one second after powering up. Simplest solution for
// now is to delay for 1 second. Something more elegant may be
// added later
delay(1000);
}
// initialise serial port
serial_manager.init_console();
cliSerial->printf("\n\nInit " FIRMWARE_STRING
"\n\nFree RAM: %u\n",
(unsigned)hal.util->available_memory());
//
// Report firmware version code expect on console (check of actual EEPROM format version is done in load_parameters function)
//
report_version();
// load parameters from EEPROM
load_parameters();
BoardConfig.init();
// initialise serial port
serial_manager.init();
// init EPM cargo gripper
#if EPM_ENABLED == ENABLED
epm.init();
#endif
// initialise notify system
// disable external leds if epm is enabled because of pin conflict on the APM
notify.init(true);
// initialise battery monitor
battery.init();
// Init RSSI
rssi.init();
barometer.init();
// Register the mavlink service callback. This will run
// anytime there are more than 5ms remaining in a call to
// hal.scheduler->delay.
hal.scheduler->register_delay_callback(mavlink_delay_cb_static, 5);
// we start by assuming USB connected, as we initialed the serial
// port with SERIAL0_BAUD. check_usb_mux() fixes this if need be.
ap.usb_connected = true;
check_usb_mux();
// setup telem slots with serial ports
for (uint8_t i = 0; i < MAVLINK_COMM_NUM_BUFFERS; i++) {
gcs[i].setup_uart(serial_manager, AP_SerialManager::SerialProtocol_MAVLink, i);
}
#if FRSKY_TELEM_ENABLED == ENABLED
// setup frsky
frsky_telemetry.init(serial_manager);
#endif
// identify ourselves correctly with the ground station
mavlink_system.sysid = g.sysid_this_mav;
#if LOGGING_ENABLED == ENABLED
log_init();
#endif
2016-02-24 15:10:07 -04:00
GCS_MAVLINK::set_dataflash(&DataFlash);
// update motor interlock state
update_using_interlock();
init_rc_in(); // sets up rc channels from radio
init_rc_out(); // sets up motors and output to escs
// initialise which outputs Servo and Relay events can use
ServoRelayEvents.set_channel_mask(~motors.get_motor_mask());
relay.init();
/*
* setup the 'main loop is dead' check. Note that this relies on
* the RC library being initialised.
*/
hal.scheduler->register_timer_failsafe(failsafe_check_static, 1000);
// Do GPS init
gps.init(&DataFlash, serial_manager);
if(g.compass_enabled)
init_compass();
#if OPTFLOW == ENABLED
// make optflow available to AHRS
ahrs.set_optflow(&optflow);
#endif
2016-05-03 01:45:37 -03:00
// init Location class
Location_Class::set_ahrs(&ahrs);
#if AP_TERRAIN_AVAILABLE && AC_TERRAIN
Location_Class::set_terrain(&terrain);
wp_nav.set_terrain(&terrain);
#endif
pos_control.set_dt(MAIN_LOOP_SECONDS);
// init the optical flow sensor
init_optflow();
#if MOUNT == ENABLED
// initialise camera mount
2016-01-26 00:18:31 -04:00
camera_mount.init(&DataFlash, serial_manager);
#endif
#if PRECISION_LANDING == ENABLED
// initialise precision landing
init_precland();
#endif
#ifdef USERHOOK_INIT
USERHOOK_INIT
#endif
#if CLI_ENABLED == ENABLED
if (g.cli_enabled) {
const char *msg = "\nPress ENTER 3 times to start interactive setup\n";
cliSerial->println(msg);
if (gcs[1].initialised && (gcs[1].get_uart() != NULL)) {
gcs[1].get_uart()->println(msg);
}
if (num_gcs > 2 && gcs[2].initialised && (gcs[2].get_uart() != NULL)) {
gcs[2].get_uart()->println(msg);
}
}
#endif // CLI_ENABLED
#if HIL_MODE != HIL_MODE_DISABLED
while (barometer.get_last_update() == 0) {
// the barometer begins updating when we get the first
// HIL_STATE message
gcs_send_text(MAV_SEVERITY_WARNING, "Waiting for first HIL_STATE message");
delay(1000);
}
// set INS to HIL mode
ins.set_hil_mode();
#endif
if(barometer.num_instances() > 1) {
//We have an external MS58XX pressure sensor connected
for(int i = 1; i < barometer.num_instances(); i++) {
barometer.set_type(i, BARO_TYPE_WATER); //Altitude (depth) is calculated differently underwater
barometer.set_precision_multiplier(i, 10); //The MS58XX values reported need to be multiplied by 10 to match units everywhere else
}
barometer.set_primary_baro(1); //Set the primary baro to external MS58XX
}
// read Baro pressure at ground
//-----------------------------
init_barometer(true);
// initialise rangefinder
#if RANGEFINDER_ENABLED == ENABLED
init_rangefinder();
#endif
// initialise AP_RPM library
rpm_sensor.init();
// initialise mission library
mission.init();
// initialise the flight mode and aux switch
// ---------------------------
reset_control_switch();
init_aux_switches();
startup_INS_ground();
// set landed flags
set_land_complete(true);
set_land_complete_maybe(true);
// we don't want writes to the serial port to cause us to pause
// mid-flight, so set the serial ports non-blocking once we are
// ready to fly
serial_manager.set_blocking_writes_all(false);
// enable CPU failsafe
failsafe_enable();
ins.set_raw_logging(should_log(MASK_LOG_IMU_RAW));
ins.set_dataflash(&DataFlash);
// init vehicle capabilties
init_capabilities();
cliSerial->print("\nReady to FLY ");
// flag that initialisation has completed
ap.initialised = true;
}
//******************************************************************************
//This function does all the calibrations, etc. that we need during a ground start
//******************************************************************************
2016-01-14 15:30:56 -04:00
void Sub::startup_INS_ground()
{
// initialise ahrs (may push imu calibration into the mpu6000 if using that device).
ahrs.init();
ahrs.set_vehicle_class(AHRS_VEHICLE_COPTER);
// Warm up and calibrate gyro offsets
ins.init(scheduler.get_loop_rate_hz());
// reset ahrs including gyro bias
ahrs.reset();
}
// calibrate gyros - returns true if succesfully calibrated
2016-01-14 15:30:56 -04:00
bool Sub::calibrate_gyros()
{
// gyro offset calibration
2016-01-14 15:30:56 -04:00
sub.ins.init_gyro();
// reset ahrs gyro bias
2016-01-14 15:30:56 -04:00
if (sub.ins.gyro_calibrated_ok_all()) {
sub.ahrs.reset_gyro_drift();
return true;
}
return false;
}
// position_ok - returns true if the horizontal absolute position is ok and home position is set
2016-01-14 15:30:56 -04:00
bool Sub::position_ok()
{
// return false if ekf failsafe has triggered
if (failsafe.ekf) {
return false;
}
// check ekf position estimate
return (ekf_position_ok() || optflow_position_ok());
}
// ekf_position_ok - returns true if the ekf claims it's horizontal absolute position estimate is ok and home position is set
2016-01-14 15:30:56 -04:00
bool Sub::ekf_position_ok()
{
if (!ahrs.have_inertial_nav()) {
// do not allow navigation with dcm position
return false;
}
// with EKF use filter status and ekf check
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal position
if (!motors.armed()) {
return ((filt_status.flags.horiz_pos_abs || filt_status.flags.pred_horiz_pos_abs));
} else {
// once armed we require a good absolute position and EKF must not be in const_pos_mode
return (filt_status.flags.horiz_pos_abs && !filt_status.flags.const_pos_mode);
}
}
// optflow_position_ok - returns true if optical flow based position estimate is ok
2016-01-14 15:30:56 -04:00
bool Sub::optflow_position_ok()
{
#if OPTFLOW != ENABLED
return false;
#else
// return immediately if optflow is not enabled or EKF not used
if (!optflow.enabled() || !ahrs.have_inertial_nav()) {
return false;
}
// get filter status from EKF
nav_filter_status filt_status = inertial_nav.get_filter_status();
// if disarmed we accept a predicted horizontal relative position
if (!motors.armed()) {
return (filt_status.flags.pred_horiz_pos_rel);
} else {
return (filt_status.flags.horiz_pos_rel && !filt_status.flags.const_pos_mode);
}
#endif
}
// update_auto_armed - update status of auto_armed flag
2016-01-14 15:30:56 -04:00
void Sub::update_auto_armed()
{
// disarm checks
if(ap.auto_armed){
// if motors are disarmed, auto_armed should also be false
if(!motors.armed()) {
set_auto_armed(false);
return;
}
// if in stabilize or acro flight mode and throttle is zero, auto-armed should become false
if(mode_has_manual_throttle(control_mode) && ap.throttle_zero && !failsafe.radio) {
set_auto_armed(false);
}
}else{
// arm checks
// if motors are armed and we are in throw mode, then auto_ermed should be true
if(motors.armed() && (!ap.throttle_zero || control_mode == THROW)) {
set_auto_armed(true);
}
}
}
2016-01-14 15:30:56 -04:00
void Sub::check_usb_mux(void)
{
bool usb_check = hal.gpio->usb_connected();
if (usb_check == ap.usb_connected) {
return;
}
// the user has switched to/from the telemetry port
ap.usb_connected = usb_check;
}
// frsky_telemetry_send - sends telemetry data using frsky telemetry
// should be called at 5Hz by scheduler
#if FRSKY_TELEM_ENABLED == ENABLED
2016-01-14 15:30:56 -04:00
void Sub::frsky_telemetry_send(void)
{
frsky_telemetry.send_frames((uint8_t)control_mode);
}
#endif
/*
should we log a message type now?
*/
2016-01-14 15:30:56 -04:00
bool Sub::should_log(uint32_t mask)
{
#if LOGGING_ENABLED == ENABLED
if (!(mask & g.log_bitmask) || in_mavlink_delay) {
return false;
}
bool ret = motors.armed() || (g.log_bitmask & MASK_LOG_WHEN_DISARMED) != 0;
if (ret && !DataFlash.logging_started() && !in_log_download) {
start_logging();
}
return ret;
#else
return false;
#endif
}