Ardupilot2/libraries/AP_BattMonitor/AP_BattMonitor_SMBus_SUI.cpp

141 lines
4.0 KiB
C++
Raw Normal View History

#include "AP_BattMonitor_config.h"
#if AP_BATTERY_SMBUS_SUI_ENABLED
#include <AP_HAL/AP_HAL.h>
#include <AP_Common/AP_Common.h>
#include <AP_Math/AP_Math.h>
#include "AP_BattMonitor.h"
#include "AP_BattMonitor_SMBus_SUI.h"
extern const AP_HAL::HAL& hal;
#define REG_CELL_VOLTAGE 0x28
#define REG_CURRENT 0x2a
// maximum number of cells that we can read data for
#define SUI_MAX_CELL_READ 4
// Constructor
AP_BattMonitor_SMBus_SUI::AP_BattMonitor_SMBus_SUI(AP_BattMonitor &mon,
AP_BattMonitor::BattMonitor_State &mon_state,
AP_BattMonitor_Params &params,
uint8_t _cell_count)
: AP_BattMonitor_SMBus(mon, mon_state, params, AP_BATTMONITOR_SMBUS_BUS_INTERNAL),
cell_count(_cell_count)
{
_pec_supported = false;
}
void AP_BattMonitor_SMBus_SUI::init(void)
{
AP_BattMonitor_SMBus::init();
if (_dev) {
_dev->set_retries(2);
}
if (_dev && timer_handle) {
// run twice as fast for two phases
_dev->adjust_periodic_callback(timer_handle, 50000);
}
}
void AP_BattMonitor_SMBus_SUI::timer()
{
uint32_t tnow = AP_HAL::micros();
// we read in two phases as the device can stall if you read
// current too rapidly after voltages
phase_voltages = !phase_voltages;
if (phase_voltages) {
read_cell_voltages();
update_health();
return;
}
// read current
int32_t current_ma;
if (read_block_bare(REG_CURRENT, (uint8_t *)&current_ma, sizeof(current_ma))) {
_state.current_amps = current_ma * -0.001;
_state.last_time_micros = tnow;
}
read_full_charge_capacity();
read_temp();
read_serial_number();
read_remaining_capacity();
update_health();
}
// read_bare_block - returns true if successful
bool AP_BattMonitor_SMBus_SUI::read_block_bare(uint8_t reg, uint8_t* data, uint8_t len) const
{
// read bytes
if (!_dev->read_registers(reg, data, len)) {
return false;
}
// return success
return true;
}
void AP_BattMonitor_SMBus_SUI::read_cell_voltages()
{
// read cell voltages
uint16_t voltbuff[SUI_MAX_CELL_READ];
if (!read_block(REG_CELL_VOLTAGE, (uint8_t *)voltbuff, sizeof(voltbuff))) {
return;
}
float pack_voltage_mv = 0.0f;
for (uint8_t i = 0; i < MIN(SUI_MAX_CELL_READ, cell_count); i++) {
const uint16_t cell = voltbuff[i];
_state.cell_voltages.cells[i] = cell;
pack_voltage_mv += (float)cell;
}
if (cell_count >= SUI_MAX_CELL_READ) {
// we can't read voltage of all cells. get overall pack voltage to work out
// an average for remaining cells
uint16_t total_mv;
if (read_word(BATTMONITOR_SMBUS_VOLTAGE, total_mv)) {
// if total voltage is below pack_voltage_mv then we will
// read zero volts for the extra cells.
total_mv = MAX(total_mv, pack_voltage_mv);
const uint16_t cell_mv = (total_mv - pack_voltage_mv) / (cell_count - SUI_MAX_CELL_READ);
for (uint8_t i = SUI_MAX_CELL_READ; i < cell_count; i++) {
_state.cell_voltages.cells[i] = cell_mv;
}
pack_voltage_mv = total_mv;
} else {
// we can't get total pack voltage. Use average of cells we have so far
const uint16_t cell_mv = pack_voltage_mv / SUI_MAX_CELL_READ;
for (uint8_t i = SUI_MAX_CELL_READ; i < cell_count; i++) {
_state.cell_voltages.cells[i] = cell_mv;
}
pack_voltage_mv += cell_mv * (cell_count - SUI_MAX_CELL_READ);
}
}
_has_cell_voltages = true;
// accumulate the pack voltage out of the total of the cells
_state.voltage = pack_voltage_mv * 0.001;
last_volt_read_us = AP_HAL::micros();
}
/*
update healthy flag
*/
void AP_BattMonitor_SMBus_SUI::update_health()
{
uint32_t now = AP_HAL::micros();
_state.healthy = (now - last_volt_read_us < AP_BATTMONITOR_SMBUS_TIMEOUT_MICROS) &&
(now - _state.last_time_micros < AP_BATTMONITOR_SMBUS_TIMEOUT_MICROS);
}
#endif // AP_BATTERY_SMBUS_SUI_ENABLED