Ardupilot2/libraries/AP_Terrain/AP_Terrain.cpp

239 lines
7.2 KiB
C++
Raw Normal View History

2014-06-30 19:51:59 -03:00
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <AP_HAL.h>
#include <AP_Common.h>
#include <AP_Math.h>
2014-06-30 21:55:00 -03:00
#include <GCS_MAVLink.h>
2014-06-30 19:51:59 -03:00
#include "AP_Terrain.h"
extern const AP_HAL::HAL& hal;
// table of user settable parameters
const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = {
// @Param: ENABLE
// @DisplayName: Terrain following enable
// @Description: enable terrain following
// @Values: 0:Disable,1:Enable
AP_GROUPINFO("ENABLE", 0, AP_Terrain, enable, 0),
AP_GROUPEND
};
// constructor
2014-06-30 21:55:00 -03:00
AP_Terrain::AP_Terrain(AP_AHRS &_ahrs) :
2014-06-30 19:51:59 -03:00
ahrs(_ahrs),
last_grid_spacing(0),
grids_allocated(0),
grids(NULL),
last_request_time_ms(0)
{
AP_Param::setup_object_defaults(this, var_info);
}
/*
allocate terrain object grid memory if enabled.
*/
void AP_Terrain::allocate(void)
{
if (enable == 0) {
return;
}
// constrain grid size to avoid 16 bit overflow
if (grid_width > 150) {
grid_width.set(150);
}
if (grid_width < 0) {
return;
}
uint16_t grids_needed = sq((grid_width+4) / 5);
uint16_t memory_needed = grids_needed * sizeof(struct grid);
if (hal.util->available_memory() < memory_needed+512) {
// refuse to allocate last bit of memory, we need some for
// stack
return;
}
if (grids != NULL && grids_needed == grids_allocated) {
// already allocated
return;
}
if (grids != NULL) {
free(grids);
}
grids = (struct grid *)calloc(grids_needed, sizeof(struct grid));
if (grids == NULL) {
// not enough memory
return;
}
}
/*
update terrain data. Check if we need to request more grids. This
should be called at 1Hz
*/
void AP_Terrain::update(void)
{
if (enable == 0) {
// not enabled
return;
}
// re-allocate if need be
allocate();
}
2014-06-30 21:55:00 -03:00
/*
given a location, calculate the 5x5 grid NW corner, plus the
grid index and grid square fraction
*/
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const
{
// grids start on integer degrees. This makes storing terrain data
// on the SD card a bit easier
info.lat_degrees = loc.lat / 10*1000*1000UL;
info.lon_degrees = loc.lng / 10*1000*1000UL;
// create reference position. Longitude scaling is taken from this point
Location ref;
ref.lat = info.lat_degrees;
ref.lng = info.lon_degrees;
// find offset from reference
Vector2f offset = location_diff(ref, loc);
// work out how many 5x5 grid squares we are in. x is north, y is east
info.idx_x = ((uint16_t)(offset.x / grid_spacing))/5;
info.idx_y = ((uint16_t)(offset.y / grid_spacing))/5;
// work out fractional (0 to 1) position within grid square.
info.frac_x = (offset.x - (info.idx_x * 5.0f * grid_spacing)) / grid_spacing;
info.frac_y = (offset.y - (info.idx_y * 5.0f * grid_spacing)) / grid_spacing;
// calculate lat/lon of SW corner of 5x5 grid
location_offset(ref, info.idx_x*grid_spacing, info.idx_y*grid_spacing);
info.grid_lat = ref.lat;
info.grid_lon = ref.lng;
}
/*
find a grid structure given a location and offset in meters
*/
const AP_Terrain::grid *AP_Terrain::find_grid(const Location &loc, uint16_t ofs_north, uint16_t ofs_east) const
{
struct grid_info info;
Location loc2 = loc;
location_offset(loc2, ofs_north, ofs_east);
calculate_grid_info(loc2, info);
// see if we have that grid
for (uint16_t i=0; i<grids_allocated; i++) {
if (grids[i].valid &&
grids[i].lat == info.grid_lat &&
grids[i].lon == info.grid_lon) {
return &grids[i];
}
}
// not found
return NULL;
}
/*
return terrain height in meters above average sea level (WGS84) for
a given position
*/
bool AP_Terrain::height_amsl(const Location &loc, float &height)
{
if (!enable || grids == NULL) {
return false;
}
struct grid_info info;
calculate_grid_info(loc, info);
// see if we have that grid
uint16_t i;
for (i=0; i<grids_allocated; i++) {
if (grids[i].valid &&
grids[i].lat == info.grid_lat &&
grids[i].lon == info.grid_lon) {
// found it, interpolate within the grid
break;
}
}
if (i == grids_allocated) {
// not found
return false;
}
// hXY are the heights of the 4 surrounding grid points
int16_t h00, h01, h10, h11;
// we can get h00 now
h00 = grids[i].height[info.idx_x][info.idx_y];
// when finding neighbouring grids ask for grid_spacing*2
// to cope with rounding resulting in gaps between grids
const uint16_t grid_sep = grid_spacing*2;
// maximum index within a grid
const uint8_t max_idx = 5-1;
// do we cross into another grid?
if (info.idx_x < max_idx && info.idx_y < max_idx) {
h01 = grids[i].height[info.idx_x][info.idx_y+1];
h10 = grids[i].height[info.idx_x+1][info.idx_y];
h11 = grids[i].height[info.idx_x+1][info.idx_y+1];
} else if (info.idx_x == max_idx && info.idx_y < max_idx) {
// we need the grid above this one
// note that we use
const grid *grid2 = find_grid(loc, grid_sep, 0);
if (grid2 == NULL) {
return false;
}
h01 = grids[i].height[info.idx_x][info.idx_y+1];
h10 = grid2->height[0][info.idx_y];
h11 = grid2->height[0][info.idx_y+1];
} else if (info.idx_x < max_idx && info.idx_y == max_idx) {
// we need the grid to the right of this one
const grid *grid2 = find_grid(loc, 0, grid_sep);
if (grid2 == NULL) {
return false;
}
h01 = grid2->height[info.idx_x][0];
h10 = grids[i].height[info.idx_x+1][info.idx_y];
h11 = grid2->height[info.idx_x+1][0];
} else {
// we need to find 3 more grids, above, right and above-right
const grid *grid_x = find_grid(loc, grid_sep, 0);
const grid *grid_y = find_grid(loc, 0, grid_sep);
const grid *grid_xy = find_grid(loc, grid_sep, grid_sep);
if (grid_x == NULL || grid_y == NULL || grid_xy == NULL) {
return false;
}
h01 = grid_y->height[info.idx_x][0];
h10 = grid_x->height[0][info.idx_y];
h11 = grid_xy->height[0][0];
}
float avg1 = (1.0f-info.frac_x) * h00 + info.frac_x * h10;
float avg2 = (1.0f-info.frac_x) * h01 + info.frac_x * h11;
float avg = (1.0f-info.frac_y) * avg1 + info.frac_y * avg2;
height = avg;
return true;
}