2014-06-30 19:51:59 -03:00
|
|
|
// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
|
|
|
|
/*
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
|
|
it under the terms of the GNU General Public License as published by
|
|
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
|
|
(at your option) any later version.
|
|
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
GNU General Public License for more details.
|
|
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <AP_HAL.h>
|
|
|
|
#include <AP_Common.h>
|
|
|
|
#include <AP_Math.h>
|
2014-06-30 21:55:00 -03:00
|
|
|
#include <GCS_MAVLink.h>
|
2014-06-30 19:51:59 -03:00
|
|
|
#include "AP_Terrain.h"
|
|
|
|
|
|
|
|
extern const AP_HAL::HAL& hal;
|
|
|
|
|
|
|
|
// table of user settable parameters
|
|
|
|
const AP_Param::GroupInfo AP_Terrain::var_info[] PROGMEM = {
|
|
|
|
// @Param: ENABLE
|
|
|
|
// @DisplayName: Terrain following enable
|
|
|
|
// @Description: enable terrain following
|
|
|
|
// @Values: 0:Disable,1:Enable
|
|
|
|
AP_GROUPINFO("ENABLE", 0, AP_Terrain, enable, 0),
|
|
|
|
|
|
|
|
AP_GROUPEND
|
|
|
|
};
|
|
|
|
|
|
|
|
// constructor
|
2014-06-30 21:55:00 -03:00
|
|
|
AP_Terrain::AP_Terrain(AP_AHRS &_ahrs) :
|
2014-06-30 19:51:59 -03:00
|
|
|
ahrs(_ahrs),
|
|
|
|
last_grid_spacing(0),
|
|
|
|
grids_allocated(0),
|
|
|
|
grids(NULL),
|
|
|
|
last_request_time_ms(0)
|
|
|
|
{
|
|
|
|
AP_Param::setup_object_defaults(this, var_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
allocate terrain object grid memory if enabled.
|
|
|
|
*/
|
|
|
|
void AP_Terrain::allocate(void)
|
|
|
|
{
|
|
|
|
if (enable == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// constrain grid size to avoid 16 bit overflow
|
|
|
|
if (grid_width > 150) {
|
|
|
|
grid_width.set(150);
|
|
|
|
}
|
|
|
|
if (grid_width < 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
uint16_t grids_needed = sq((grid_width+4) / 5);
|
|
|
|
uint16_t memory_needed = grids_needed * sizeof(struct grid);
|
|
|
|
if (hal.util->available_memory() < memory_needed+512) {
|
|
|
|
// refuse to allocate last bit of memory, we need some for
|
|
|
|
// stack
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (grids != NULL && grids_needed == grids_allocated) {
|
|
|
|
// already allocated
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (grids != NULL) {
|
|
|
|
free(grids);
|
|
|
|
}
|
|
|
|
grids = (struct grid *)calloc(grids_needed, sizeof(struct grid));
|
|
|
|
if (grids == NULL) {
|
|
|
|
// not enough memory
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
update terrain data. Check if we need to request more grids. This
|
|
|
|
should be called at 1Hz
|
|
|
|
*/
|
|
|
|
void AP_Terrain::update(void)
|
|
|
|
{
|
|
|
|
if (enable == 0) {
|
|
|
|
// not enabled
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// re-allocate if need be
|
|
|
|
allocate();
|
|
|
|
}
|
2014-06-30 21:55:00 -03:00
|
|
|
|
|
|
|
/*
|
|
|
|
given a location, calculate the 5x5 grid NW corner, plus the
|
|
|
|
grid index and grid square fraction
|
|
|
|
*/
|
|
|
|
void AP_Terrain::calculate_grid_info(const Location &loc, struct grid_info &info) const
|
|
|
|
{
|
|
|
|
// grids start on integer degrees. This makes storing terrain data
|
|
|
|
// on the SD card a bit easier
|
|
|
|
info.lat_degrees = loc.lat / 10*1000*1000UL;
|
|
|
|
info.lon_degrees = loc.lng / 10*1000*1000UL;
|
|
|
|
|
|
|
|
// create reference position. Longitude scaling is taken from this point
|
|
|
|
Location ref;
|
|
|
|
ref.lat = info.lat_degrees;
|
|
|
|
ref.lng = info.lon_degrees;
|
|
|
|
|
|
|
|
// find offset from reference
|
|
|
|
Vector2f offset = location_diff(ref, loc);
|
|
|
|
|
|
|
|
// work out how many 5x5 grid squares we are in. x is north, y is east
|
|
|
|
info.idx_x = ((uint16_t)(offset.x / grid_spacing))/5;
|
|
|
|
info.idx_y = ((uint16_t)(offset.y / grid_spacing))/5;
|
|
|
|
|
|
|
|
// work out fractional (0 to 1) position within grid square.
|
|
|
|
info.frac_x = (offset.x - (info.idx_x * 5.0f * grid_spacing)) / grid_spacing;
|
|
|
|
info.frac_y = (offset.y - (info.idx_y * 5.0f * grid_spacing)) / grid_spacing;
|
|
|
|
|
|
|
|
// calculate lat/lon of SW corner of 5x5 grid
|
|
|
|
location_offset(ref, info.idx_x*grid_spacing, info.idx_y*grid_spacing);
|
|
|
|
info.grid_lat = ref.lat;
|
|
|
|
info.grid_lon = ref.lng;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
find a grid structure given a location and offset in meters
|
|
|
|
*/
|
|
|
|
const AP_Terrain::grid *AP_Terrain::find_grid(const Location &loc, uint16_t ofs_north, uint16_t ofs_east) const
|
|
|
|
{
|
|
|
|
struct grid_info info;
|
|
|
|
Location loc2 = loc;
|
|
|
|
location_offset(loc2, ofs_north, ofs_east);
|
|
|
|
calculate_grid_info(loc2, info);
|
|
|
|
|
|
|
|
// see if we have that grid
|
|
|
|
for (uint16_t i=0; i<grids_allocated; i++) {
|
|
|
|
if (grids[i].valid &&
|
|
|
|
grids[i].lat == info.grid_lat &&
|
|
|
|
grids[i].lon == info.grid_lon) {
|
|
|
|
return &grids[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// not found
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
return terrain height in meters above average sea level (WGS84) for
|
|
|
|
a given position
|
|
|
|
*/
|
|
|
|
bool AP_Terrain::height_amsl(const Location &loc, float &height)
|
|
|
|
{
|
|
|
|
if (!enable || grids == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct grid_info info;
|
|
|
|
calculate_grid_info(loc, info);
|
|
|
|
|
|
|
|
// see if we have that grid
|
|
|
|
uint16_t i;
|
|
|
|
for (i=0; i<grids_allocated; i++) {
|
|
|
|
if (grids[i].valid &&
|
|
|
|
grids[i].lat == info.grid_lat &&
|
|
|
|
grids[i].lon == info.grid_lon) {
|
|
|
|
// found it, interpolate within the grid
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (i == grids_allocated) {
|
|
|
|
// not found
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
// hXY are the heights of the 4 surrounding grid points
|
|
|
|
int16_t h00, h01, h10, h11;
|
|
|
|
|
|
|
|
// we can get h00 now
|
|
|
|
h00 = grids[i].height[info.idx_x][info.idx_y];
|
|
|
|
|
|
|
|
// when finding neighbouring grids ask for grid_spacing*2
|
|
|
|
// to cope with rounding resulting in gaps between grids
|
|
|
|
const uint16_t grid_sep = grid_spacing*2;
|
|
|
|
|
|
|
|
// maximum index within a grid
|
|
|
|
const uint8_t max_idx = 5-1;
|
|
|
|
|
|
|
|
// do we cross into another grid?
|
|
|
|
if (info.idx_x < max_idx && info.idx_y < max_idx) {
|
|
|
|
h01 = grids[i].height[info.idx_x][info.idx_y+1];
|
|
|
|
h10 = grids[i].height[info.idx_x+1][info.idx_y];
|
|
|
|
h11 = grids[i].height[info.idx_x+1][info.idx_y+1];
|
|
|
|
} else if (info.idx_x == max_idx && info.idx_y < max_idx) {
|
|
|
|
// we need the grid above this one
|
|
|
|
// note that we use
|
|
|
|
const grid *grid2 = find_grid(loc, grid_sep, 0);
|
|
|
|
if (grid2 == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
h01 = grids[i].height[info.idx_x][info.idx_y+1];
|
|
|
|
h10 = grid2->height[0][info.idx_y];
|
|
|
|
h11 = grid2->height[0][info.idx_y+1];
|
|
|
|
} else if (info.idx_x < max_idx && info.idx_y == max_idx) {
|
|
|
|
// we need the grid to the right of this one
|
|
|
|
const grid *grid2 = find_grid(loc, 0, grid_sep);
|
|
|
|
if (grid2 == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
h01 = grid2->height[info.idx_x][0];
|
|
|
|
h10 = grids[i].height[info.idx_x+1][info.idx_y];
|
|
|
|
h11 = grid2->height[info.idx_x+1][0];
|
|
|
|
} else {
|
|
|
|
// we need to find 3 more grids, above, right and above-right
|
|
|
|
const grid *grid_x = find_grid(loc, grid_sep, 0);
|
|
|
|
const grid *grid_y = find_grid(loc, 0, grid_sep);
|
|
|
|
const grid *grid_xy = find_grid(loc, grid_sep, grid_sep);
|
|
|
|
if (grid_x == NULL || grid_y == NULL || grid_xy == NULL) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
h01 = grid_y->height[info.idx_x][0];
|
|
|
|
h10 = grid_x->height[0][info.idx_y];
|
|
|
|
h11 = grid_xy->height[0][0];
|
|
|
|
}
|
|
|
|
|
|
|
|
float avg1 = (1.0f-info.frac_x) * h00 + info.frac_x * h10;
|
|
|
|
float avg2 = (1.0f-info.frac_x) * h01 + info.frac_x * h11;
|
|
|
|
float avg = (1.0f-info.frac_y) * avg1 + info.frac_y * avg2;
|
|
|
|
|
|
|
|
height = avg;
|
|
|
|
return true;
|
|
|
|
}
|