Ardupilot2/libraries/AP_InertialSensor/AP_InertialSensor_SITL.cpp

365 lines
14 KiB
C++
Raw Normal View History

#include <AP_HAL/AP_HAL.h>
#include "AP_InertialSensor_SITL.h"
#include <SITL/SITL.h>
#include <stdio.h>
#if AP_SIM_INS_ENABLED
const extern AP_HAL::HAL& hal;
AP_InertialSensor_SITL::AP_InertialSensor_SITL(AP_InertialSensor &imu, const uint16_t sample_rates[]) :
AP_InertialSensor_Backend(imu),
gyro_sample_hz(sample_rates[0]),
accel_sample_hz(sample_rates[1])
{
}
/*
detect the sensor
*/
AP_InertialSensor_Backend *AP_InertialSensor_SITL::detect(AP_InertialSensor &_imu, const uint16_t sample_rates[])
{
AP_InertialSensor_SITL *sensor = new AP_InertialSensor_SITL(_imu, sample_rates);
if (sensor == nullptr) {
return nullptr;
}
if (!sensor->init_sensor()) {
delete sensor;
return nullptr;
}
return sensor;
}
bool AP_InertialSensor_SITL::init_sensor(void)
{
sitl = AP::sitl();
if (sitl == nullptr) {
return false;
}
return true;
}
// calculate a noisy noise component
static float calculate_noise(float noise, float noise_variation) {
return noise * (1.0f + noise_variation * rand_float());
}
float AP_InertialSensor_SITL::get_temperature(void)
{
#if HAL_INS_TEMPERATURE_CAL_ENABLE
if (!is_zero(sitl->imu_temp_fixed)) {
// user wants fixed temperature
return sitl->imu_temp_fixed;
}
uint32_t now = AP_HAL::millis();
if (temp_start_ms == 0) {
temp_start_ms = now;
}
// follow a curve with given start, end and time constant
const float tsec = (AP_HAL::millis() - temp_start_ms) * 0.001f;
const float T0 = sitl->imu_temp_start;
const float T1 = sitl->imu_temp_end;
const float tconst = sitl->imu_temp_tconst;
return T1 - (T1 - T0) * expf(-tsec / tconst);
#else
return 20.0f;
#endif
}
/*
generate an accelerometer sample
*/
void AP_InertialSensor_SITL::generate_accel()
{
Vector3f accel_accum;
uint8_t nsamples = enable_fast_sampling(accel_instance) ? 4 : 1;
for (uint8_t j = 0; j < nsamples; j++) {
Vector3f accel = Vector3f(sitl->state.xAccel,
sitl->state.yAccel,
sitl->state.zAccel);
const Vector3f &accel_trim = sitl->accel_trim.get();
if (!accel_trim.is_zero()) {
Matrix3f trim_rotation;
trim_rotation.from_euler(accel_trim.x, accel_trim.y, 0);
accel = trim_rotation.transposed() * accel;
}
2021-01-19 22:35:24 -04:00
// add scaling
Vector3f accel_scale = sitl->accel_scale[accel_instance].get();
// note that we divide so the SIM_ACC values match the
// INS_ACCSCAL values
if (!is_zero(accel_scale.x)) {
accel.x /= accel_scale.x;
2021-01-19 22:35:24 -04:00
}
if (!is_zero(accel_scale.y)) {
accel.y /= accel_scale.y;
2021-01-19 22:35:24 -04:00
}
if (!is_zero(accel_scale.z)) {
accel.z /= accel_scale.z;
2021-01-19 22:35:24 -04:00
}
// apply bias
const Vector3f &accel_bias = sitl->accel_bias[accel_instance].get();
accel += accel_bias;
// minimum noise levels are 2 bits, but averaged over many
// samples, giving around 0.01 m/s/s
float accel_noise = 0.01f;
float noise_variation = 0.05f;
// this smears the individual motor peaks somewhat emulating physical motors
float freq_variation = 0.12f;
// add in sensor noise
accel += Vector3f{rand_float(), rand_float(), rand_float()} * accel_noise;
bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min;
// on a real 180mm copter gyro noise varies between 0.8-4 m/s/s for throttle 0.2-0.8
// giving a accel noise variation of 5.33 m/s/s over the full throttle range
if (motors_on) {
// add extra noise when the motors are on
accel_noise = sitl->accel_noise[accel_instance];
}
// VIB_FREQ is a static vibration applied to each axis
const Vector3f &vibe_freq = sitl->vibe_freq;
if (!vibe_freq.is_zero() && motors_on) {
accel.x += sinf(accel_time * 2 * M_PI * vibe_freq.x) * calculate_noise(accel_noise, noise_variation);
accel.y += sinf(accel_time * 2 * M_PI * vibe_freq.y) * calculate_noise(accel_noise, noise_variation);
accel.z += sinf(accel_time * 2 * M_PI * vibe_freq.z) * calculate_noise(accel_noise, noise_variation);
accel_time += 1.0f / (accel_sample_hz * nsamples);
}
// VIB_MOT_MAX is a rpm-scaled vibration applied to each axis
if (!is_zero(sitl->vibe_motor) && motors_on) {
uint32_t mask = sitl->state.motor_mask;
uint8_t mbit;
while ((mbit = __builtin_ffs(mask)) != 0) {
const uint8_t motor = mbit-1;
mask &= ~(1U<<motor);
uint32_t harmonics = uint32_t(sitl->vibe_motor_harmonics);
const float base_freq = calculate_noise(sitl->state.rpm[motor] / 60.0f, freq_variation);
while (harmonics != 0) {
const uint8_t bit = __builtin_ffs(harmonics);
harmonics &= ~(1U<<(bit-1U));
const float phase = accel_motor_phase[motor] * float(bit);
accel.x += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation);
accel.y += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation);
accel.z += sinf(phase) * calculate_noise(accel_noise * sitl->vibe_motor_scale, noise_variation);
}
const float phase_incr = base_freq * 2 * M_PI / (accel_sample_hz * nsamples);
accel_motor_phase[motor] = wrap_PI(accel_motor_phase[motor] + phase_incr);
}
}
// correct for the acceleration due to the IMU position offset and angular acceleration
// correct for the centripetal acceleration
// only apply corrections to first accelerometer
Vector3f pos_offset = sitl->imu_pos_offset;
if (!pos_offset.is_zero()) {
// calculate sensed acceleration due to lever arm effect
// Note: the % operator has been overloaded to provide a cross product
Vector3f angular_accel = Vector3f(radians(sitl->state.angAccel.x), radians(sitl->state.angAccel.y), radians(sitl->state.angAccel.z));
Vector3f lever_arm_accel = angular_accel % pos_offset;
// calculate sensed acceleration due to centripetal acceleration
Vector3f angular_rate = Vector3f(radians(sitl->state.rollRate), radians(sitl->state.pitchRate), radians(sitl->state.yawRate));
Vector3f centripetal_accel = angular_rate % (angular_rate % pos_offset);
// apply corrections
accel += lever_arm_accel + centripetal_accel;
}
if (fabsf(sitl->accel_fail[accel_instance]) > 1.0e-6f) {
accel.x = accel.y = accel.z = sitl->accel_fail[accel_instance];
}
#if HAL_INS_TEMPERATURE_CAL_ENABLE
const float T = get_temperature();
sitl->imu_tcal[gyro_instance].sitl_apply_accel(T, accel);
#endif
_notify_new_accel_sensor_rate_sample(accel_instance, accel);
accel_accum += accel;
}
accel_accum /= nsamples;
_rotate_and_correct_accel(accel_instance, accel_accum);
_notify_new_accel_raw_sample(accel_instance, accel_accum, AP_HAL::micros64());
_publish_temperature(accel_instance, get_temperature());
}
/*
generate a gyro sample
*/
void AP_InertialSensor_SITL::generate_gyro()
{
Vector3f gyro_accum;
uint8_t nsamples = enable_fast_sampling(gyro_instance) ? 8 : 1;
const float _gyro_drift = gyro_drift();
for (uint8_t j = 0; j < nsamples; j++) {
float p = radians(sitl->state.rollRate) + _gyro_drift;
float q = radians(sitl->state.pitchRate) + _gyro_drift;
float r = radians(sitl->state.yawRate) + _gyro_drift;
// minimum gyro noise is less than 1 bit
float gyro_noise = ToRad(0.04f);
constexpr float noise_variation = 0.05f;
// this smears the individual motor peaks somewhat emulating physical motors
constexpr float freq_variation = 0.12f;
// add in sensor noise
p += gyro_noise * rand_float();
q += gyro_noise * rand_float();
r += gyro_noise * rand_float();
bool motors_on = sitl->throttle > sitl->ins_noise_throttle_min;
// on a real 180mm copter gyro noise varies between 0.2-0.4 rad/s for throttle 0.2-0.8
// giving a gyro noise variation of 0.33 rad/s or 20deg/s over the full throttle range
if (motors_on) {
// add extra noise when the motors are on
gyro_noise = ToRad(sitl->gyro_noise[gyro_instance]) * sitl->throttle;
}
// VIB_FREQ is a static vibration applied to each axis
const Vector3f &vibe_freq = sitl->vibe_freq;
if (vibe_freq.is_zero() && is_zero(sitl->vibe_motor)) {
// no rpm noise, so add in background noise if any
p += gyro_noise * rand_float();
q += gyro_noise * rand_float();
r += gyro_noise * rand_float();
}
if (!vibe_freq.is_zero() && motors_on) {
p += sinf(gyro_time * 2 * M_PI * vibe_freq.x) * calculate_noise(gyro_noise, noise_variation);
q += sinf(gyro_time * 2 * M_PI * vibe_freq.y) * calculate_noise(gyro_noise, noise_variation);
r += sinf(gyro_time * 2 * M_PI * vibe_freq.z) * calculate_noise(gyro_noise, noise_variation);
gyro_time += 1.0f / (gyro_sample_hz * nsamples);
}
// VIB_MOT_MAX is a rpm-scaled vibration applied to each axis
if (!is_zero(sitl->vibe_motor) && motors_on) {
uint32_t mask = sitl->state.motor_mask;
uint8_t mbit;
while ((mbit = __builtin_ffs(mask)) != 0) {
const uint8_t motor = mbit-1;
mask &= ~(1U<<motor);
uint32_t harmonics = uint32_t(sitl->vibe_motor_harmonics);
const float base_freq = calculate_noise(sitl->state.rpm[motor] / 60.0f, freq_variation);
while (harmonics != 0) {
const uint8_t bit = __builtin_ffs(harmonics);
harmonics &= ~(1U<<(bit-1U));
const float phase = gyro_motor_phase[motor] * float(bit);
p += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation);
q += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation);
r += sinf(phase) * calculate_noise(gyro_noise * sitl->vibe_motor_scale, noise_variation);
}
const float phase_incr = base_freq * 2 * M_PI / (gyro_sample_hz * nsamples);
gyro_motor_phase[motor] = wrap_PI(gyro_motor_phase[motor] + phase_incr);
}
}
Vector3f gyro {p, q, r};
#if HAL_INS_TEMPERATURE_CAL_ENABLE
sitl->imu_tcal[gyro_instance].sitl_apply_gyro(get_temperature(), gyro);
#endif
// add in gyro scaling
const Vector3f &scale = sitl->gyro_scale[gyro_instance];
gyro.x *= (1 + scale.x * 0.01f);
gyro.y *= (1 + scale.y * 0.01f);
gyro.z *= (1 + scale.z * 0.01f);
gyro_accum += gyro;
_notify_new_gyro_sensor_rate_sample(gyro_instance, gyro);
}
gyro_accum /= nsamples;
_rotate_and_correct_gyro(gyro_instance, gyro_accum);
_notify_new_gyro_raw_sample(gyro_instance, gyro_accum, AP_HAL::micros64());
}
void AP_InertialSensor_SITL::timer_update(void)
{
uint64_t now = AP_HAL::micros64();
#if 0
// insert a 1s pause in IMU data. This triggers a pause in EK2
// processing that leads to some interesting issues
if (now > 5e6 && now < 6e6) {
return;
}
#endif
if (sitl == nullptr) {
return;
}
if (now >= next_accel_sample) {
if (((1U << accel_instance) & sitl->accel_fail_mask) == 0) {
generate_accel();
if (next_accel_sample == 0) {
next_accel_sample = now + 1000000UL / accel_sample_hz;
} else {
while (now >= next_accel_sample) {
next_accel_sample += 1000000UL / accel_sample_hz;
}
}
}
}
if (now >= next_gyro_sample) {
if (((1U << gyro_instance) & sitl->gyro_fail_mask) == 0) {
generate_gyro();
if (next_gyro_sample == 0) {
next_gyro_sample = now + 1000000UL / gyro_sample_hz;
} else {
while (now >= next_gyro_sample) {
next_gyro_sample += 1000000UL / gyro_sample_hz;
}
}
}
}
}
float AP_InertialSensor_SITL::gyro_drift(void) const
{
if (is_zero(sitl->drift_speed) ||
is_zero(sitl->drift_time)) {
return 0;
}
double period = sitl->drift_time * 2;
double minutes = fmod(AP_HAL::micros64() / 60.0e6, period);
if (minutes < period/2) {
return minutes * ToRad(sitl->drift_speed);
}
return (period - minutes) * ToRad(sitl->drift_speed);
}
bool AP_InertialSensor_SITL::update(void)
{
update_accel(accel_instance);
update_gyro(gyro_instance);
return true;
}
uint8_t AP_InertialSensor_SITL::bus_id = 0;
void AP_InertialSensor_SITL::start()
{
if (!_imu.register_gyro(gyro_instance, gyro_sample_hz,
AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, bus_id, 1, DEVTYPE_SITL)) ||
!_imu.register_accel(accel_instance, accel_sample_hz,
AP_HAL::Device::make_bus_id(AP_HAL::Device::BUS_TYPE_SITL, bus_id, 2, DEVTYPE_SITL))) {
return;
}
bus_id++;
hal.scheduler->register_timer_process(FUNCTOR_BIND_MEMBER(&AP_InertialSensor_SITL::timer_update, void));
}
#endif // AP_SIM_INS_ENABLED