Ardupilot2/libraries/RC_Channel/RC_Channel.cpp

764 lines
21 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* RC_Channel.cpp - class for one RC channel input
*/
#include <stdlib.h>
#include <cmath>
#include <AP_HAL/AP_HAL.h>
extern const AP_HAL::HAL& hal;
#include <AP_Math/AP_Math.h>
#include "RC_Channel.h"
#include <GCS_MAVLink/GCS.h>
#include <AC_Avoidance/AC_Avoid.h>
#include <AC_Sprayer/AC_Sprayer.h>
#include <AP_Gripper/AP_Gripper.h>
#include <AP_LandingGear/AP_LandingGear.h>
const AP_Param::GroupInfo RC_Channel::var_info[] = {
// @Param: MIN
// @DisplayName: RC min PWM
// @Description: RC minimum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MIN", 1, RC_Channel, radio_min, 1100),
// @Param: TRIM
// @DisplayName: RC trim PWM
// @Description: RC trim (neutral) PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("TRIM", 2, RC_Channel, radio_trim, 1500),
// @Param: MAX
// @DisplayName: RC max PWM
// @Description: RC maximum PWM pulse width in microseconds. Typically 1000 is lower limit, 1500 is neutral and 2000 is upper limit.
// @Units: PWM
// @Range: 800 2200
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("MAX", 3, RC_Channel, radio_max, 1900),
// @Param: REVERSED
// @DisplayName: RC reversed
2017-02-07 01:32:57 -04:00
// @Description: Reverse channel input. Set to 0 for normal operation. Set to 1 to reverse this input channel.
// @Values: 0:Normal,1:Reversed
// @User: Advanced
AP_GROUPINFO("REVERSED", 4, RC_Channel, reversed, 0),
// @Param: DZ
// @DisplayName: RC dead-zone
// @Description: PWM dead zone in microseconds around trim or bottom
// @Units: PWM
2013-11-26 09:34:28 -04:00
// @Range: 0 200
// @User: Advanced
AP_GROUPINFO("DZ", 5, RC_Channel, dead_zone, 0),
// @Param: OPTION
// @DisplayName: RC input option
// @Description: Function assigned to this RC channel
// @Values{Copter}: 0:Do Nothing, 2:Flip, 3:Simple Mode, 4:RTL, 5:Save Trim, 7:Save WP, 9:Camera Trigger, 10:RangeFinder, 11:Fence, 13:Super Simple Mode, 14:Acro Trainer, 15:Sprayer, 16:Auto, 17:AutoTune, 18:Land, 19:Gripper, 21:Parachute Enable, 22:Parachute Release, 23:Parachute 3pos, 24:Auto Mission Reset, 25:AttCon Feed Forward, 26:AttCon Accel Limits, 27:Retract Mount, 28:Relay On/Off, 34:Relay2 On/Off, 35:Relay3 On/Off, 36:Relay4 On/Off, 29:Landing Gear, 30:Lost Copter Sound, 31:Motor Emergency Stop, 32:Motor Interlock, 33:Brake, 37:Throw, 38:ADSB-Avoidance, 39:PrecLoiter, 40:Proximity Avoidance, 41:ArmDisarm, 42:SmartRTL, 43:InvertedFlight, 44:Winch Enable, 45:WinchControl, 46:RC Override Enable, 47:User Function 1, 48:User Function 2, 49:User Function 3, 58:Clear Waypoints, 60:ZigZag, 61:ZigZag SaveWP, 62:Compass Learn, 65:GPS Disable, 66: Relay5, 67: Relay6
// @Values{Rover}: 0:Do Nothing, 4:RTL, 7:Save WP, 9:Camera Trigger, 16:Auto, 19:Gripper, 28:Relay On/Off, 30:Lost Rover Sound, 34:Relay2 On/Off, 35:Relay3 On/Off, 36:Relay4 On/Off, 40:Proximity Avoidance, 41:ArmDisarm, 42:SmartRTL, 46:RC Override Enable, 50:LearnCruise, 51:Manual, 52:Acro, 53:Steering, 54:Hold, 55:Guided, 56:Loiter, 57:Follow, 58:Clear Waypoints, 59:Simple, 62:Compass Learn, 63:Sailboat Tack, 65:GPS Disable, 66: Relay5, 67: Relay6
// @Values{Plane}: 0:Do Nothing, 9:Camera Trigger, 28:Relay On/Off, 29:Landing Gear, 34:Relay2 On/Off, 30:Lost Plane Sound, 35:Relay3 On/Off, 36:Relay4 On/Off, 41:ArmDisarm, 43:InvertedFlight, 46:RC Override Enable, 58:Clear Waypoints, 62:Compass Learn, 64: Reverse Throttle, 65:GPS Disable, 66: Relay5, 67: Relay6
// @User: Standard
AP_GROUPINFO_FRAME("OPTION", 6, RC_Channel, option, 0, AP_PARAM_FRAME_COPTER|AP_PARAM_FRAME_ROVER|AP_PARAM_FRAME_PLANE),
AP_GROUPEND
2012-02-11 07:54:21 -04:00
};
// constructor
RC_Channel::RC_Channel(void)
{
AP_Param::setup_object_defaults(this, var_info);
}
void
RC_Channel::set_range(uint16_t high)
{
type_in = RC_CHANNEL_TYPE_RANGE;
high_in = high;
}
void
RC_Channel::set_angle(uint16_t angle)
{
type_in = RC_CHANNEL_TYPE_ANGLE;
high_in = angle;
}
void
RC_Channel::set_default_dead_zone(int16_t dzone)
{
dead_zone.set_default(abs(dzone));
}
bool
RC_Channel::get_reverse(void) const
{
return bool(reversed.get());
}
// read input from hal.rcin or overrides
bool
RC_Channel::update(void)
{
if (has_override() && !(*RC_Channels::options & RC_IGNORE_OVERRIDES)) {
radio_in = override_value;
} else if (!(*RC_Channels::options & RC_IGNORE_RECEIVER)) {
radio_in = hal.rcin->read(ch_in);
} else {
return false;
}
if (type_in == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range();
} else {
//RC_CHANNEL_TYPE_ANGLE
control_in = pwm_to_angle();
}
return true;
}
// recompute control values with no deadzone
// When done this way the control_in value can be used as servo_out
// to give the same output as input
void
RC_Channel::recompute_pwm_no_deadzone()
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
control_in = pwm_to_range_dz(0);
} else {
//RC_CHANNEL_ANGLE
control_in = pwm_to_angle_dz(0);
}
}
/*
return the center stick position expressed as a control_in value
used for thr_mid in copter
*/
int16_t RC_Channel::get_control_mid() const
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
int16_t r_in = (radio_min.get() + radio_max.get())/2;
if (reversed) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + dead_zone;
return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
} else {
return 0;
}
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz_trim(uint16_t _dead_zone, uint16_t _trim) const
{
int16_t radio_trim_high = _trim + _dead_zone;
int16_t radio_trim_low = _trim - _dead_zone;
2012-02-19 01:08:17 -04:00
int16_t reverse_mul = (reversed?-1:1);
if (radio_in > radio_trim_high && radio_max != radio_trim_high) {
return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_high)) / (int32_t)(radio_max - radio_trim_high);
} else if (radio_in < radio_trim_low && radio_trim_low != radio_min) {
return reverse_mul * ((int32_t)high_in * (int32_t)(radio_in - radio_trim_low)) / (int32_t)(radio_trim_low - radio_min);
} else {
return 0;
}
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value using the specified dead_zone
*/
int16_t
RC_Channel::pwm_to_angle_dz(uint16_t _dead_zone) const
{
return pwm_to_angle_dz_trim(_dead_zone, radio_trim);
}
/*
return an "angle in centidegrees" (normally -4500 to 4500) from
the current radio_in value
*/
int16_t
RC_Channel::pwm_to_angle() const
{
return pwm_to_angle_dz(dead_zone);
}
/*
convert a pulse width modulation value to a value in the configured
range, using the specified deadzone
*/
int16_t
RC_Channel::pwm_to_range_dz(uint16_t _dead_zone) const
{
int16_t r_in = constrain_int16(radio_in, radio_min.get(), radio_max.get());
if (reversed) {
r_in = radio_max.get() - (r_in - radio_min.get());
}
int16_t radio_trim_low = radio_min + _dead_zone;
if (r_in > radio_trim_low) {
return (((int32_t)(high_in) * (int32_t)(r_in - radio_trim_low)) / (int32_t)(radio_max - radio_trim_low));
}
return 0;
}
/*
convert a pulse width modulation value to a value in the configured
range
*/
int16_t
RC_Channel::pwm_to_range() const
{
return pwm_to_range_dz(dead_zone);
}
int16_t RC_Channel::get_control_in_zero_dz(void) const
{
if (type_in == RC_CHANNEL_TYPE_RANGE) {
return pwm_to_range_dz(0);
}
return pwm_to_angle_dz(0);
}
// ------------------------------------------
float
RC_Channel::norm_input() const
{
float ret;
int16_t reverse_mul = (reversed?-1:1);
if (radio_in < radio_trim) {
if (radio_min >= radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_trim - radio_min);
} else {
if (radio_max <= radio_trim) {
return 0.0f;
}
ret = reverse_mul * (float)(radio_in - radio_trim) / (float)(radio_max - radio_trim);
}
return constrain_float(ret, -1.0f, 1.0f);
}
float
RC_Channel::norm_input_dz() const
{
int16_t dz_min = radio_trim - dead_zone;
int16_t dz_max = radio_trim + dead_zone;
float ret;
int16_t reverse_mul = (reversed?-1:1);
if (radio_in < dz_min && dz_min > radio_min) {
ret = reverse_mul * (float)(radio_in - dz_min) / (float)(dz_min - radio_min);
} else if (radio_in > dz_max && radio_max > dz_max) {
ret = reverse_mul * (float)(radio_in - dz_max) / (float)(radio_max - dz_max);
} else {
ret = 0;
}
return constrain_float(ret, -1.0f, 1.0f);
}
/*
get percentage input from 0 to 100. This ignores the trim value.
*/
uint8_t
RC_Channel::percent_input() const
{
if (radio_in <= radio_min) {
return reversed?100:0;
}
if (radio_in >= radio_max) {
return reversed?0:100;
}
uint8_t ret = 100.0f * (radio_in - radio_min) / (float)(radio_max - radio_min);
if (reversed) {
ret = 100 - ret;
}
return ret;
}
/*
Return true if the channel is at trim and within the DZ
*/
bool RC_Channel::in_trim_dz() const
{
return is_bounded_int32(radio_in, radio_trim - dead_zone, radio_trim + dead_zone);
}
void RC_Channel::set_override(const uint16_t v, const uint32_t timestamp_us)
{
if (!rc().gcs_overrides_enabled()) {
return;
}
// this UINT16_MAX stuff should really, really be in the
// mavlink packet handling code. It can be moved once that
// code is in the GCS_MAVLink class!
if (v == UINT16_MAX) {
return;
}
last_override_time = timestamp_us != 0 ? timestamp_us : AP_HAL::millis();
override_value = v;
RC_Channels::has_new_overrides = true;
}
void RC_Channel::clear_override()
{
last_override_time = 0;
override_value = 0;
}
bool RC_Channel::has_override() const
{
if (override_value <= 0) {
return false;
}
const float override_timeout_ms = RC_Channels::override_timeout->get() * 1e3f;
return is_positive(override_timeout_ms) && ((AP_HAL::millis() - last_override_time) < (uint32_t)override_timeout_ms);
}
//
// support for auxillary switches:
//
#define MODE_SWITCH_DEBOUNCE_TIME_MS 200
uint32_t RC_Channel::old_switch_positions;
RC_Channel::modeswitch_state_t RC_Channel::mode_switch_state;
void RC_Channel::reset_mode_switch()
{
mode_switch_state.last_position = -1;
mode_switch_state.debounced_position = -1;
read_mode_switch();
}
void RC_Channel::read_mode_switch()
{
// calculate position of flight mode switch
const uint16_t pulsewidth = get_radio_in();
if (pulsewidth <= 900 || pulsewidth >= 2200) {
return; // This is an error condition
}
modeswitch_pos_t position;
if (pulsewidth < 1231) position = 0;
else if (pulsewidth < 1361) position = 1;
else if (pulsewidth < 1491) position = 2;
else if (pulsewidth < 1621) position = 3;
else if (pulsewidth < 1750) position = 4;
else position = 5;
if (mode_switch_state.last_position == position) {
// nothing to do
return;
}
const uint32_t tnow_ms = AP_HAL::millis();
if (position != mode_switch_state.debounced_position) {
mode_switch_state.debounced_position = position;
// store time that switch last moved
mode_switch_state.last_edge_time_ms = tnow_ms;
return;
}
if (tnow_ms - mode_switch_state.last_edge_time_ms < MODE_SWITCH_DEBOUNCE_TIME_MS) {
// still in debounce
return;
}
// set flight mode and simple mode setting
mode_switch_changed(position);
// set the last switch position. This marks the
// transition as complete, even if the mode switch actually
// failed. This prevents the vehicle changing modes
// unexpectedly some time later.
mode_switch_state.last_position = position;
}
//
// support for auxillary switches:
//
// init_aux_switch_function - initialize aux functions
void RC_Channel::init_aux_function(const aux_func_t ch_option, const aux_switch_pos_t ch_flag)
{
// init channel options
switch(ch_option) {
case RC_OVERRIDE_ENABLE:
case AVOID_PROXIMITY:
do_aux_function(ch_option, ch_flag);
break;
// the following functions to not need to be initialised:
case RELAY:
case RELAY2:
case RELAY3:
case RELAY4:
case RELAY5:
case RELAY6:
case CAMERA_TRIGGER:
case LOST_VEHICLE_SOUND:
case DO_NOTHING:
2018-08-16 23:44:15 -03:00
case CLEAR_WP:
case COMPASS_LEARN:
case LANDING_GEAR:
break;
case GRIPPER:
case SPRAYER:
case GPS_DISABLE:
do_aux_function(ch_option, ch_flag);
break;
default:
gcs().send_text(MAV_SEVERITY_WARNING, "Failed to initialise RC function (%u)", ch_option);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
AP_HAL::panic("RC function (%u) initialisation not handled", ch_option);
#endif
break;
}
}
void RC_Channel::read_aux()
{
const aux_func_t _option = (aux_func_t)option.get();
if (_option == DO_NOTHING) {
// may wish to add special cases for other "AUXSW" things
// here e.g. RCMAP_ROLL etc once they become options
return;
}
aux_switch_pos_t new_position;
if (!read_3pos_switch(new_position)) {
return;
}
const aux_switch_pos_t old_position = old_switch_position();
if (new_position == old_position) {
debounce.count = 0;
return;
}
if (debounce.new_position != new_position) {
debounce.new_position = new_position;
debounce.count = 0;
}
// a value of 2 means we need 3 values in a row with the same
// value to activate
if (debounce.count++ < 2) {
return;
}
// debounced; undertake the action:
do_aux_function(_option, new_position);
set_old_switch_position(new_position);
}
void RC_Channel::do_aux_function_avoid_proximity(const aux_switch_pos_t ch_flag)
{
AC_Avoid *avoid = AP::ac_avoid();
if (avoid == nullptr) {
return;
}
switch (ch_flag) {
case HIGH:
avoid->proximity_avoidance_enable(true);
break;
case MIDDLE:
// nothing
break;
case LOW:
avoid->proximity_avoidance_enable(false);
break;
}
}
void RC_Channel::do_aux_function_camera_trigger(const aux_switch_pos_t ch_flag)
{
AP_Camera *camera = AP::camera();
if (camera == nullptr) {
return;
}
if (ch_flag == HIGH) {
camera->take_picture();
}
}
2018-08-16 23:44:15 -03:00
void RC_Channel::do_aux_function_clear_wp(const aux_switch_pos_t ch_flag)
{
AP_Mission *mission = AP::mission();
if (mission == nullptr) {
return;
}
if (ch_flag == HIGH) {
mission->clear();
}
}
void RC_Channel::do_aux_function_relay(const uint8_t relay, bool val)
{
AP_ServoRelayEvents *servorelayevents = AP::servorelayevents();
if (servorelayevents == nullptr) {
return;
}
servorelayevents->do_set_relay(relay, val);
}
void RC_Channel::do_aux_function_sprayer(const aux_switch_pos_t ch_flag)
{
AC_Sprayer *sprayer = AP::sprayer();
if (sprayer == nullptr) {
return;
}
sprayer->run(ch_flag == HIGH);
// if we are disarmed the pilot must want to test the pump
sprayer->test_pump((ch_flag == HIGH) && !hal.util->get_soft_armed());
}
void RC_Channel::do_aux_function_gripper(const aux_switch_pos_t ch_flag)
{
AP_Gripper *gripper = AP::gripper();
if (gripper == nullptr) {
return;
}
switch(ch_flag) {
case LOW:
gripper->release();
// copter.Log_Write_Event(DATA_GRIPPER_RELEASE);
break;
case MIDDLE:
// nothing
break;
case HIGH:
gripper->grab();
// copter.Log_Write_Event(DATA_GRIPPER_GRAB);
break;
}
}
void RC_Channel::do_aux_function_lost_vehicle_sound(const aux_switch_pos_t ch_flag)
{
switch (ch_flag) {
case HIGH:
AP_Notify::flags.vehicle_lost = true;
break;
case MIDDLE:
// nothing
break;
case LOW:
AP_Notify::flags.vehicle_lost = false;
break;
}
}
void RC_Channel::do_aux_function_rc_override_enable(const aux_switch_pos_t ch_flag)
{
switch (ch_flag) {
case HIGH: {
rc().set_gcs_overrides_enabled(true);
break;
}
case MIDDLE:
// nothing
break;
case LOW: {
rc().set_gcs_overrides_enabled(false);
break;
}
}
}
void RC_Channel::do_aux_function(const aux_func_t ch_option, const aux_switch_pos_t ch_flag)
{
switch(ch_option) {
case CAMERA_TRIGGER:
do_aux_function_camera_trigger(ch_flag);
break;
case GRIPPER:
do_aux_function_gripper(ch_flag);
break;
case RC_OVERRIDE_ENABLE:
// Allow or disallow RC_Override
do_aux_function_rc_override_enable(ch_flag);
break;
case AVOID_PROXIMITY:
do_aux_function_avoid_proximity(ch_flag);
break;
case RELAY:
do_aux_function_relay(0, ch_flag == HIGH);
break;
case RELAY2:
do_aux_function_relay(1, ch_flag == HIGH);
break;
case RELAY3:
do_aux_function_relay(2, ch_flag == HIGH);
break;
case RELAY4:
do_aux_function_relay(3, ch_flag == HIGH);
break;
case RELAY5:
do_aux_function_relay(4, ch_flag == HIGH);
break;
case RELAY6:
do_aux_function_relay(5, ch_flag == HIGH);
break;
2018-08-16 23:44:15 -03:00
case CLEAR_WP:
do_aux_function_clear_wp(ch_flag);
break;
case SPRAYER:
do_aux_function_sprayer(ch_flag);
break;
case LOST_VEHICLE_SOUND:
do_aux_function_lost_vehicle_sound(ch_flag);
break;
case COMPASS_LEARN:
if (ch_flag == HIGH) {
Compass &compass = AP::compass();
compass.set_learn_type(Compass::LEARN_INFLIGHT, false);
}
break;
case LANDING_GEAR: {
AP_LandingGear *lg = AP_LandingGear::instance();
if (lg == nullptr) {
break;
}
switch (ch_flag) {
case LOW:
lg->set_position(AP_LandingGear::LandingGear_Deploy);
break;
case MIDDLE:
// nothing
break;
case HIGH:
lg->set_position(AP_LandingGear::LandingGear_Retract);
break;
}
break;
}
case GPS_DISABLE:
AP::gps().force_disable(ch_flag == HIGH);
break;
default:
gcs().send_text(MAV_SEVERITY_INFO, "Invalid channel option (%u)", ch_option);
break;
}
}
void RC_Channel::init_aux()
{
aux_switch_pos_t position;
if (!read_3pos_switch(position)) {
position = aux_switch_pos_t::LOW;
}
init_aux_function((aux_func_t)option.get(), position);
}
// read_3pos_switch
bool RC_Channel::read_3pos_switch(RC_Channel::aux_switch_pos_t &ret) const
{
const uint16_t in = get_radio_in();
if (in <= 900 or in >= 2200) {
return false;
}
if (in < AUX_PWM_TRIGGER_LOW) {
ret = LOW;
} else if (in > AUX_PWM_TRIGGER_HIGH) {
ret = HIGH;
} else {
ret = MIDDLE;
}
return true;
}
RC_Channel *RC_Channels::find_channel_for_option(const RC_Channel::aux_func_t option)
{
for (uint8_t i=0; i<NUM_RC_CHANNELS; i++) {
RC_Channel *c = channel(i);
if (c == nullptr) {
// odd?
continue;
}
if ((RC_Channel::aux_func_t)c->option.get() == option) {
return c;
}
}
return nullptr;
}
// duplicate_options_exist - returns true if any options are duplicated
bool RC_Channels::duplicate_options_exist()
{
uint8_t auxsw_option_counts[256] = {};
for (uint8_t i=0; i<NUM_RC_CHANNELS; i++) {
const RC_Channel *c = channel(i);
if (c == nullptr) {
// odd?
continue;
}
const uint16_t option = c->option.get();
if (option >= sizeof(auxsw_option_counts)) {
continue;
}
auxsw_option_counts[option]++;
}
for (uint16_t i=0; i<sizeof(auxsw_option_counts); i++) {
if (i == 0) { // MAGIC VALUE! This is AUXSW_DO_NOTHING
continue;
}
if (auxsw_option_counts[i] > 1) {
return true;
}
}
return false;
}