Ardupilot2/libraries/AP_KDECAN/AP_KDECAN.cpp

323 lines
11 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* AP_KDECAN.cpp
*
* Author: Francisco Ferreira and Tom Pittenger
*/
#include "AP_KDECAN.h"
#if AP_KDECAN_ENABLED
#include <stdio.h>
#include <AP_BoardConfig/AP_BoardConfig.h>
#include <AP_HAL/utility/sparse-endian.h>
#include <SRV_Channel/SRV_Channel.h>
#include <GCS_MAVLink/GCS.h>
#include <AP_Math/AP_Math.h> // for MIN,MAX
extern const AP_HAL::HAL& hal;
// table of user settable CAN bus parameters
const AP_Param::GroupInfo AP_KDECAN::var_info[] = {
// @Param: NPOLE
// @DisplayName: Number of motor poles
// @Description: Sets the number of motor poles to calculate the correct RPM value
AP_GROUPINFO("NPOLE", 1, AP_KDECAN, _num_poles, DEFAULT_NUM_POLES),
AP_GROUPEND
};
AP_KDECAN::AP_KDECAN()
{
AP_Param::setup_object_defaults(this, var_info);
#if CONFIG_HAL_BOARD == HAL_BOARD_SITL
if (_singleton != nullptr) {
AP_HAL::panic("AP_KDECAN must be singleton");
}
#endif
_singleton = this;
}
void AP_KDECAN::init()
{
if (_driver != nullptr) {
// only allow one instance
return;
}
AP_CANManager::Driver_Type protocol = AP_CANManager::Driver_Type_None;
for (uint8_t i = 0; i < HAL_NUM_CAN_IFACES; i++) {
#if HAL_CANMANAGER_ENABLED
protocol = AP::can().get_driver_type(i);
#elif defined(HAL_BUILD_AP_PERIPH)
protocol = CANSensor::get_driver_type(i);
#endif
if (protocol == AP_CANManager::Driver_Type_KDECAN) {
_driver = new AP_KDECAN_Driver();
return;
}
}
}
void AP_KDECAN::update()
{
if (_driver == nullptr) {
return;
}
_driver->update((uint8_t)_num_poles.get());
}
AP_KDECAN_Driver::AP_KDECAN_Driver() : CANSensor("KDECAN")
{
register_driver(AP_CANManager::Driver_Type_KDECAN);
// start thread for receiving and sending CAN frames
hal.scheduler->thread_create(FUNCTOR_BIND_MEMBER(&AP_KDECAN_Driver::loop, void), "kdecan", 4096, AP_HAL::Scheduler::PRIORITY_CAN, 0);
}
// parse inbound frames
void AP_KDECAN_Driver::handle_frame(AP_HAL::CANFrame &frame)
{
if (!frame.isExtended()) {
return;
}
const frame_id_t id { .value = frame.id & AP_HAL::CANFrame::MaskExtID };
// if (id.object_address != TELEMETRY_OBJ_ADDR) {
// GCS_SEND_TEXT(MAV_SEVERITY_DEBUG,"KDECAN: rx id:%d, src:%d, dest:%d, len:%d", (int)id.object_address, (int)id.source_id, (int)id.destination_id, (int)frame.dlc);
// }
// check if frame is valid: directed at autopilot, doesn't come from broadcast and ESC was detected before
switch (id.object_address) {
case ESC_INFO_OBJ_ADDR:
if (frame.dlc == 5 &&
id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id >= ESC_NODE_ID_FIRST &&
id.source_id < (KDECAN_MAX_NUM_ESCS + ESC_NODE_ID_FIRST))
{
const uint16_t bitmask = (1U << (id.source_id - ESC_NODE_ID_FIRST));
if ((bitmask & _init.detected_bitmask) != bitmask) {
_init.detected_bitmask |= bitmask;
GCS_SEND_TEXT(MAV_SEVERITY_INFO,"KDECAN: Found ESC id %u", id.source_id);
}
}
break;
#if HAL_WITH_ESC_TELEM
case TELEMETRY_OBJ_ADDR:
if (id.destination_id == AUTOPILOT_NODE_ID &&
id.source_id != BROADCAST_NODE_ID &&
(1U << (id.source_id - ESC_NODE_ID_FIRST) & _init.detected_bitmask) &&
frame.dlc == 8)
{
const uint8_t idx = id.source_id - ESC_NODE_ID_FIRST;
const uint8_t num_poles = _telemetry.num_poles > 0 ? _telemetry.num_poles : DEFAULT_NUM_POLES;
update_rpm(idx, uint16_t(uint16_t(frame.data[4] << 8 | frame.data[5]) * 60UL * 2 / num_poles));
TelemetryData t {
.temperature_cdeg = int16_t(frame.data[6] * 100),
.voltage = float(uint16_t(frame.data[0] << 8 | frame.data[1])) * 0.01f,
.current = float(uint16_t(frame.data[2] << 8 | frame.data[3])) * 0.01f,
};
update_telem_data(idx, t,
AP_ESC_Telem_Backend::TelemetryType::CURRENT |
AP_ESC_Telem_Backend::TelemetryType::VOLTAGE |
AP_ESC_Telem_Backend::TelemetryType::TEMPERATURE);
}
break;
#endif // HAL_WITH_ESC_TELEM
case UPDATE_NODE_ID_OBJ_ADDR:
// reply from setting new node ID
_init.detected_bitmask |= 1U << (id.source_id - ESC_NODE_ID_FIRST);
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "KDECAN: Found ESC id %u", id.source_id);
break;
}
}
void AP_KDECAN_Driver::update(const uint8_t num_poles)
{
if (!hal.util->get_soft_armed() || _init.detected_bitmask == 0) {
return;
}
#if HAL_WITH_ESC_TELEM
_telemetry.num_poles = num_poles;
#endif
uint16_t pwm[KDECAN_MAX_NUM_ESCS] {};
uint8_t index = 0;
for (uint16_t i = 0; i < ARRAY_SIZE(pwm); i++) {
if ((_init.detected_bitmask & (1UL<<index)) == 0) {
continue;
}
if (SRV_Channels::channel_function(i) > SRV_Channel::Aux_servo_function_t::k_none) {
pwm[index++] = SRV_Channels::srv_channel(i)->get_output_pwm();
}
}
{
// queue the PWMs for loop()
WITH_SEMAPHORE(_output.sem);
memcpy(&_output.pwm, &pwm, sizeof(_output.pwm));
_output.is_new = true;
}
#if AP_KDECAN_USE_EVENTS
if (_output.thread_ctx != nullptr) {
// trigger the thread to wake up immediately
chEvtSignal(_output.thread_ctx, 1);
}
#endif
}
void AP_KDECAN_Driver::loop()
{
uint16_t pwm[KDECAN_MAX_NUM_ESCS] {};
#if AP_KDECAN_USE_EVENTS
_output.thread_ctx = chThdGetSelfX();
#endif
uint8_t broadcast_esc_info_boot_spam_count = 3;
uint32_t broadcast_esc_info_next_interval_ms = 100; // spam a few at boot at 5Hz
while (true) {
#if AP_KDECAN_USE_EVENTS
// sleep until we get new data, but also wake up at 400Hz to send the old data again
chEvtWaitAnyTimeout(ALL_EVENTS, chTimeUS2I(2500));
#else
hal.scheduler->delay_microseconds(2500); // 400Hz
#endif
const uint32_t now_ms = AP_HAL::millis();
// This should run at 400Hz
{
WITH_SEMAPHORE(_output.sem);
if (_output.is_new) {
_output.last_new_ms = now_ms;
_output.is_new = false;
memcpy(&pwm, &_output.pwm, sizeof(pwm));
} else if (_output.last_new_ms && now_ms - _output.last_new_ms > 1000) {
// if we haven't gotten any PWM updates for a bit, zero it
// out so we don't just keep sending the same values forever
memset(&pwm, 0, sizeof(pwm));
_output.last_new_ms = 0;
}
}
uint8_t index = 0;
uint8_t retry = 0;
while (index < KDECAN_MAX_NUM_ESCS) {
if ((_init.detected_bitmask & (1 << index)) == 0) {
// we're not sending this index so skip it
index++;
} else if (send_packet_uint16(SET_PWM_OBJ_ADDR, (index + ESC_NODE_ID_FIRST), 1, pwm[index]) || retry++ >= 10) {
// sent successfully or we've retried too many times, move on to the next
index++;
retry = 0;
} else {
// send failed, likely due to CAN TX buffer full. Delay a tiny bit and try again but only a few times
hal.scheduler->delay_microseconds(10);
}
} // while index
#if HAL_WITH_ESC_TELEM
// broadcast as request-telemetry msg to everyone
if (_init.detected_bitmask != 0 && now_ms - _telemetry.timer_ms >= TELEMETRY_INTERVAL_MS) {
if (send_packet(TELEMETRY_OBJ_ADDR, BROADCAST_NODE_ID, 10)) {
_telemetry.timer_ms = now_ms;
}
}
#endif // HAL_WITH_ESC_TELEM
if ((_init.detected_bitmask == 0 || broadcast_esc_info_boot_spam_count > 0) && (now_ms - _init.detected_bitmask_ms >= broadcast_esc_info_next_interval_ms)) {
// broadcast an "anyone there?" quick at boot but then 1Hz forever until we see at least 1 esc respond
if (broadcast_esc_info_boot_spam_count > 0) {
broadcast_esc_info_boot_spam_count--;
} else {
broadcast_esc_info_next_interval_ms = 1000;
}
if (send_packet(ESC_INFO_OBJ_ADDR, BROADCAST_NODE_ID, 100)) {
_init.detected_bitmask_ms = now_ms;
}
}
} // while true
}
bool AP_KDECAN_Driver::send_packet_uint16(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint16_t data)
{
const uint16_t data_be16 = htobe16(data);
return send_packet(address, dest_id, timeout_ms, (uint8_t*)&data_be16, 2);
}
bool AP_KDECAN_Driver::send_packet(const uint8_t address, const uint8_t dest_id, const uint32_t timeout_ms, const uint8_t *data, const uint8_t data_len)
{
// broadcast telemetry request frame
frame_id_t id = { { .object_address = address,
.destination_id = dest_id,
.source_id = AUTOPILOT_NODE_ID,
.priority = 0,
.unused = 0 } };
AP_HAL::CANFrame frame = AP_HAL::CANFrame((id.value | AP_HAL::CANFrame::FlagEFF), data, data_len, false);
const uint64_t timeout_us = uint64_t(timeout_ms) * 1000UL;
return write_frame(frame, timeout_us);
}
bool AP_KDECAN_Driver::pre_arm_check(char* reason, const uint8_t reason_len)
{
uint16_t configured_servo_motors_count = 0;
for (uint16_t i = 0; i < NUM_SERVO_CHANNELS; i++) {
if (SRV_Channel::is_motor(SRV_Channels::channel_function(i))) {
configured_servo_motors_count++;
}
}
const uint8_t num_present_escs = __builtin_popcount(_init.detected_bitmask);
if (configured_servo_motors_count != num_present_escs) {
snprintf(reason, reason_len, "ESC count error: Srv:%u, Detected:%u", (unsigned)configured_servo_motors_count, (unsigned)num_present_escs);
return false;
}
return true;
}
// singleton instance
AP_KDECAN *AP_KDECAN::_singleton;
namespace AP {
AP_KDECAN *kdecan()
{
return AP_KDECAN::get_singleton();
}
};
#endif // AP_KDECAN_ENABLED