Ardupilot2/libraries/AP_GPS/AP_GPS_SBF.cpp

703 lines
29 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
//
// Septentrio GPS driver for ArduPilot.
// Code by Michael Oborne
//
#include "AP_GPS.h"
#include "AP_GPS_SBF.h"
#include <GCS_MAVLink/GCS.h>
#include <AP_InternalError/AP_InternalError.h>
#include <stdio.h>
#include <ctype.h>
#if AP_GPS_SBF_ENABLED
extern const AP_HAL::HAL& hal;
#define SBF_DEBUGGING 0
#if SBF_DEBUGGING
# define Debug(fmt, args ...) \
do { \
hal.console->printf("%s:%d: " fmt "\n", \
__FUNCTION__, __LINE__, \
## args); \
hal.scheduler->delay(1); \
} while(0)
#else
# define Debug(fmt, args ...)
#endif
#ifndef GPS_SBF_STREAM_NUMBER
#define GPS_SBF_STREAM_NUMBER 1
#endif
#define SBF_EXCESS_COMMAND_BYTES 5 // 2 start bytes + validity byte + space byte + endline byte
#define RX_ERROR_MASK (CONGESTION | \
2017-09-21 22:22:22 -03:00
MISSEDEVENT | \
CPUOVERLOAD | \
INVALIDCONFIG | \
OUTOFGEOFENCE)
constexpr const char *AP_GPS_SBF::portIdentifiers[];
constexpr const char* AP_GPS_SBF::_initialisation_blob[];
constexpr const char* AP_GPS_SBF::sbas_on_blob[];
2017-09-21 22:22:22 -03:00
AP_GPS_SBF::AP_GPS_SBF(AP_GPS &_gps,
AP_GPS::Params &_params,
AP_GPS::GPS_State &_state,
AP_HAL::UARTDriver *_port) :
AP_GPS_Backend(_gps, _params, _state, _port)
2015-12-07 08:47:51 -04:00
{
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
2015-12-07 08:47:51 -04:00
_config_last_ack_time = AP_HAL::millis();
// if we ever parse RTK observations it will always be of type NED, so set it once
state.rtk_baseline_coords_type = RTK_BASELINE_COORDINATE_SYSTEM_NED;
// yaw available when option bit set or using dual antenna
if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw) ||
(get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA)) {
state.gps_yaw_configured = true;
}
}
AP_GPS_SBF::~AP_GPS_SBF (void) {
free(config_string);
}
// Process all bytes available from the stream
//
bool
AP_GPS_SBF::read(void)
{
bool ret = false;
uint32_t available_bytes = port->available();
for (uint32_t i = 0; i < available_bytes; i++) {
uint8_t temp = port->read();
#if AP_GPS_DEBUG_LOGGING_ENABLED
log_data(&temp, 1);
#endif
ret |= parse(temp);
}
const uint32_t now = AP_HAL::millis();
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE) {
if (config_step != Config_State::Complete) {
if (now > _init_blob_time) {
if (now > _config_last_ack_time + 2000) {
const size_t port_enable_len = strlen(_port_enable);
if (port_enable_len <= port->txspace()) {
// try to enable input on the GPS port if we have not made progress on configuring it
Debug("SBF Sending port enable");
port->write((const uint8_t*)_port_enable, port_enable_len);
_config_last_ack_time = now;
}
} else if (readyForCommand) {
if (config_string == nullptr) {
switch (config_step) {
case Config_State::Baud_Rate:
if (asprintf(&config_string, "scs,COM%d,baud%d,bits8,No,bit1,%s\n",
(int)params.com_port,
230400,
port->get_flow_control() != AP_HAL::UARTDriver::flow_control::FLOW_CONTROL_ENABLE ? "none" : "RTS|CTS") == -1) {
config_string = nullptr;
}
break;
case Config_State::SSO:
const char *extra_config;
switch (get_type()) {
case AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA:
extra_config = "+AttCovEuler+AuxAntPositions";
break;
case AP_GPS::GPS_Type::GPS_TYPE_SBF:
default:
extra_config = "";
break;
}
if (asprintf(&config_string, "sso,Stream%d,COM%d,PVTGeodetic+DOP+ReceiverStatus+VelCovGeodetic+BaseVectorGeod%s,msec100\n",
(int)GPS_SBF_STREAM_NUMBER,
(int)params.com_port,
extra_config) == -1) {
config_string = nullptr;
}
break;
case Config_State::Blob:
if (asprintf(&config_string, "%s\n", _initialisation_blob[_init_blob_index]) == -1) {
config_string = nullptr;
}
break;
case Config_State::SBAS:
switch ((AP_GPS::SBAS_Mode)gps._sbas_mode) {
case AP_GPS::SBAS_Mode::Disabled:
if (asprintf(&config_string, "%s\n", sbas_off) == -1) {
config_string = nullptr;
}
break;
case AP_GPS::SBAS_Mode::Enabled:
if (asprintf(&config_string, "%s\n", sbas_on_blob[_init_blob_index]) == -1) {
config_string = nullptr;
}
break;
case AP_GPS::SBAS_Mode::DoNotChange:
config_string = nullptr;
config_step = Config_State::Complete;
break;
}
break;
case Config_State::SGA:
{
const char *targetGA = "none";
if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) {
targetGA = "MultiAntenna";
}
if (asprintf(&config_string, "sga, %s\n", targetGA)) {
config_string = nullptr;
}
break;
}
case Config_State::Complete:
// should never reach here, why search for a config if we have fully configured already
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
}
if (config_string != nullptr) {
const size_t config_length = strlen(config_string);
if (config_length <= port->txspace()) {
Debug("SBF sending init string: %s", config_string);
port->write((const uint8_t*)config_string, config_length);
readyForCommand = false;
}
}
}
}
} else if (gps._raw_data == 2) { // only manage disarm/rearms when the user opts into it
if (hal.util->get_soft_armed()) {
_has_been_armed = true;
} else if (_has_been_armed && (RxState & SBF_DISK_MOUNTED)) {
// since init is done at this point and unmounting should be rate limited,
// take over the _init_blob_time variable
if (now > _init_blob_time) {
unmount_disk();
_init_blob_time = now + 1000;
}
}
}
}
// yaw timeout after 300 milliseconds
if ((now - state.gps_yaw_time_ms) > 300) {
state.have_gps_yaw = false;
state.have_gps_yaw_accuracy = false;
}
return ret;
}
bool AP_GPS_SBF::logging_healthy(void) const
{
switch (gps._raw_data) {
case 1:
default:
return (RxState & SBF_DISK_MOUNTED) && (RxState & SBF_DISK_ACTIVITY);
case 2:
return ((RxState & SBF_DISK_MOUNTED) && (RxState & SBF_DISK_ACTIVITY)) || (!hal.util->get_soft_armed() && _has_been_armed);
}
}
bool
AP_GPS_SBF::parse(uint8_t temp)
{
switch (sbf_msg.sbf_state)
{
default:
case sbf_msg_parser_t::PREAMBLE1:
if (temp == SBF_PREAMBLE1) {
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE2;
sbf_msg.read = 0;
} else {
// attempt to detect command prompt
portIdentifier[portLength++] = (char)temp;
bool foundPossiblePort = false;
for (const char *portId : portIdentifiers) {
if (strncmp(portId, portIdentifier, MIN(portLength, 3)) == 0) {
// we found one of the COM/USB/IP related ports
if (portLength == 4) {
// validate that we have an ascii number
if (isdigit((char)temp)) {
foundPossiblePort = true;
break;
}
} else if (portLength >= sizeof(portIdentifier)) {
if ((char)temp == '>') {
readyForCommand = true;
Debug("SBF: Ready for command");
}
} else {
foundPossiblePort = true;
}
break;
}
}
if (!foundPossiblePort) {
portLength = 0;
}
}
break;
case sbf_msg_parser_t::PREAMBLE2:
if (temp == SBF_PREAMBLE2) {
sbf_msg.sbf_state = sbf_msg_parser_t::CRC1;
} else if (temp == 'R') {
Debug("SBF got a response\n");
sbf_msg.sbf_state = sbf_msg_parser_t::COMMAND_LINE;
}
else
{
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
}
break;
case sbf_msg_parser_t::CRC1:
sbf_msg.crc = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::CRC2;
break;
case sbf_msg_parser_t::CRC2:
sbf_msg.crc += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID1;
break;
case sbf_msg_parser_t::BLOCKID1:
sbf_msg.blockid = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::BLOCKID2;
break;
case sbf_msg_parser_t::BLOCKID2:
sbf_msg.blockid += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH1;
break;
case sbf_msg_parser_t::LENGTH1:
sbf_msg.length = temp;
sbf_msg.sbf_state = sbf_msg_parser_t::LENGTH2;
break;
case sbf_msg_parser_t::LENGTH2:
sbf_msg.length += (uint16_t)(temp << 8);
sbf_msg.sbf_state = sbf_msg_parser_t::DATA;
if (sbf_msg.length % 4 != 0) {
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
}
if (sbf_msg.length < 8) {
Debug("bad packet length=%u\n", (unsigned)sbf_msg.length);
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
crc_error_counter++; // this is a probable buffer overflow, but this
// indicates not enough bytes to do a crc
break;
}
break;
case sbf_msg_parser_t::DATA:
if (sbf_msg.read < sizeof(sbf_msg.data)) {
sbf_msg.data.bytes[sbf_msg.read] = temp;
}
sbf_msg.read++;
if (sbf_msg.read >= (sbf_msg.length - 8)) {
if (sbf_msg.read > sizeof(sbf_msg.data)) {
// not interested in these large messages
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
uint16_t crc = crc16_ccitt((uint8_t*)&sbf_msg.blockid, 2, 0);
crc = crc16_ccitt((uint8_t*)&sbf_msg.length, 2, crc);
crc = crc16_ccitt((uint8_t*)&sbf_msg.data, sbf_msg.length - 8, crc);
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
if (sbf_msg.crc == crc) {
return process_message();
} else {
Debug("crc fail\n");
crc_error_counter++;
}
}
break;
case sbf_msg_parser_t::COMMAND_LINE:
if (sbf_msg.read < (sizeof(sbf_msg.data) - 1)) {
sbf_msg.data.bytes[sbf_msg.read] = temp;
} else {
// we don't have enough buffer to compare the commands
// most probable cause is that a user injected a longer command then
// we have buffer for, or it could be a corruption, either way we
// simply ignore the result
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
sbf_msg.read++;
if (temp == '\n') {
sbf_msg.data.bytes[sbf_msg.read] = 0;
// received the result, lets assess it
if (sbf_msg.data.bytes[0] == ':') {
// valid command, determine if it was the one we were trying
// to send in the configuration sequence
if (config_string != nullptr) {
if (!strncmp(config_string, (char *)(sbf_msg.data.bytes + 2),
sbf_msg.read - SBF_EXCESS_COMMAND_BYTES)) {
Debug("SBF Ack Command: %s\n", sbf_msg.data.bytes);
free(config_string);
config_string = nullptr;
switch (config_step) {
case Config_State::Baud_Rate:
config_step = Config_State::SSO;
break;
case Config_State::SSO:
config_step = Config_State::Blob;
break;
case Config_State::Blob:
_init_blob_index++;
if (_init_blob_index >= ARRAY_SIZE(_initialisation_blob)) {
config_step = Config_State::SBAS;
_init_blob_index = 0;
}
break;
case Config_State::SBAS:
_init_blob_index++;
if ((gps._sbas_mode == AP_GPS::SBAS_Mode::Disabled)
||_init_blob_index >= ARRAY_SIZE(sbas_on_blob)) {
config_step = Config_State::SGA;
}
break;
case Config_State::SGA:
config_step = Config_State::Complete;
break;
case Config_State::Complete:
// should never reach here, this implies that we validated a config string when we hadn't sent any
INTERNAL_ERROR(AP_InternalError::error_t::flow_of_control);
break;
}
_config_last_ack_time = AP_HAL::millis();
} else {
Debug("SBF Ack command (unexpected): %s\n", sbf_msg.data.bytes);
}
}
} else {
// rejected command, send it out as a debug
Debug("SBF NACK Command: %s\n", sbf_msg.data.bytes);
}
// resume normal parsing
sbf_msg.sbf_state = sbf_msg_parser_t::PREAMBLE1;
break;
}
break;
}
return false;
}
bool
AP_GPS_SBF::process_message(void)
{
2017-05-24 18:39:47 -03:00
uint16_t blockid = (sbf_msg.blockid & 8191u);
Debug("BlockID %d", blockid);
2017-05-24 18:39:47 -03:00
switch (blockid) {
case PVTGeodetic:
{
const msg4007 &temp = sbf_msg.data.msg4007u;
// Update time state
if (temp.WNc != 65535) {
state.time_week = temp.WNc;
state.time_week_ms = (uint32_t)(temp.TOW);
}
2015-12-07 08:47:51 -04:00
check_new_itow(temp.TOW, sbf_msg.length);
2015-12-07 08:47:51 -04:00
state.last_gps_time_ms = AP_HAL::millis();
2016-05-12 14:02:29 -03:00
// Update velocity state (don't use 2·10^10)
if (temp.Vn > -200000) {
state.velocity.x = (float)(temp.Vn);
state.velocity.y = (float)(temp.Ve);
state.velocity.z = (float)(-temp.Vu);
2015-12-07 08:47:51 -04:00
state.have_vertical_velocity = true;
velocity_to_speed_course(state);
state.rtk_age_ms = temp.MeanCorrAge * 10;
// value is expressed as twice the rms error = int16 * 0.01/2
state.horizontal_accuracy = (float)temp.HAccuracy * 0.005f;
state.vertical_accuracy = (float)temp.VAccuracy * 0.005f;
2015-12-07 08:47:51 -04:00
state.have_horizontal_accuracy = true;
state.have_vertical_accuracy = true;
}
2017-12-04 20:48:36 -04:00
// Update position state (don't use -2·10^10)
if (temp.Latitude > -200000) {
state.location.lat = (int32_t)(temp.Latitude * RAD_TO_DEG_DOUBLE * (double)1e7);
state.location.lng = (int32_t)(temp.Longitude * RAD_TO_DEG_DOUBLE * (double)1e7);
2022-07-28 05:42:01 -03:00
state.have_undulation = true;
state.undulation = -temp.Undulation;
set_alt_amsl_cm(state, ((float)temp.Height - temp.Undulation) * 1e2f);
}
state.num_sats = temp.NrSV;
if (temp.NrSV == 255) {
// Do-Not-Use value for NrSV field in PVTGeodetic message
state.num_sats = 0;
}
Debug("temp.Mode=0x%02x\n", (unsigned)temp.Mode);
switch (temp.Mode & 15) {
case 0: // no pvt
state.status = AP_GPS::NO_FIX;
break;
case 1: // standalone
state.status = AP_GPS::GPS_OK_FIX_3D;
break;
case 2: // dgps
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
case 3: // fixed location
state.status = AP_GPS::GPS_OK_FIX_3D;
break;
case 4: // rtk fixed
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
break;
case 5: // rtk float
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
break;
case 6: // sbas
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_DGPS;
break;
case 7: // moving rtk fixed
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FIXED;
break;
case 8: // moving rtk float
2016-10-16 21:56:34 -03:00
state.status = AP_GPS::GPS_OK_FIX_3D_RTK_FLOAT;
break;
}
2017-05-24 18:39:47 -03:00
if ((temp.Mode & 64) > 0) { // gps is in base mode
state.status = AP_GPS::NO_FIX;
2017-05-24 18:39:47 -03:00
} else if ((temp.Mode & 128) > 0) { // gps only has 2d fix
state.status = AP_GPS::GPS_OK_FIX_2D;
2017-05-24 18:39:47 -03:00
}
return true;
}
2017-05-24 18:39:47 -03:00
case DOP:
{
const msg4001 &temp = sbf_msg.data.msg4001u;
check_new_itow(temp.TOW, sbf_msg.length);
2017-05-21 23:10:00 -03:00
state.hdop = temp.HDOP;
state.vdop = temp.VDOP;
2017-05-24 18:39:47 -03:00
break;
}
2017-05-24 18:39:47 -03:00
case ReceiverStatus:
{
const msg4014 &temp = sbf_msg.data.msg4014u;
check_new_itow(temp.TOW, sbf_msg.length);
RxState = temp.RxState;
2018-04-23 19:46:27 -03:00
if ((RxError & RX_ERROR_MASK) != (temp.RxError & RX_ERROR_MASK)) {
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %u: SBF error changed (0x%08x/0x%08x)", (unsigned int)(state.instance + 1),
(unsigned int)(RxError & RX_ERROR_MASK), (unsigned int)(temp.RxError & RX_ERROR_MASK));
2018-04-23 19:46:27 -03:00
}
2017-09-21 22:22:22 -03:00
RxError = temp.RxError;
2017-05-24 18:39:47 -03:00
break;
}
case VelCovGeodetic:
{
const msg5908 &temp = sbf_msg.data.msg5908u;
check_new_itow(temp.TOW, sbf_msg.length);
2017-12-04 20:48:36 -04:00
// select the maximum variance, as the EKF will apply it to all the columns in it's estimate
// FIXME: Support returning the covariance matrix to the EKF
2017-05-24 18:39:47 -03:00
float max_variance_squared = MAX(temp.Cov_VnVn, MAX(temp.Cov_VeVe, temp.Cov_VuVu));
if (is_positive(max_variance_squared)) {
state.have_speed_accuracy = true;
state.speed_accuracy = sqrt(max_variance_squared);
} else {
state.have_speed_accuracy = false;
}
break;
}
case AttEulerCov:
{
// yaw accuracy is taken from this message even though we actually calculate the yaw ourself (see AuxAntPositions below)
// this is OK based on the assumption that the calculation methods are similar and that inaccuracy arises from the sensor readings
if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) {
const msg5939 &temp = sbf_msg.data.msg5939u;
check_new_itow(temp.TOW, sbf_msg.length);
constexpr double floatDNU = -2e-10f;
constexpr uint8_t errorBits = 0x8F; // Bits 0-1 are aux 1 baseline
// Bits 2-3 are aux 2 baseline
// Bit 7 is attitude not requested
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal" // suppress -Wfloat-equal as it's false positive when testing for DNU values
if (((temp.Error & errorBits) == 0)
&& (temp.Cov_HeadHead != floatDNU)) {
#pragma GCC diagnostic pop
state.gps_yaw_accuracy = sqrtf(temp.Cov_HeadHead);
state.have_gps_yaw_accuracy = true;
} else {
state.gps_yaw_accuracy = false;
}
}
break;
}
case AuxAntPositions:
{
#if GPS_MOVING_BASELINE
if (get_type() == AP_GPS::GPS_Type::GPS_TYPE_SBF_DUAL_ANTENNA) {
// calculate yaw using reported antenna positions in earth-frame
// note that this calculation does not correct for the vehicle's roll and pitch meaning it is inaccurate at very high lean angles
const msg5942 &temp = sbf_msg.data.msg5942u;
check_new_itow(temp.TOW, sbf_msg.length);
if (temp.N > 0 && temp.ant1.Error == 0 && temp.ant1.AmbiguityType == 0) {
// valid RTK integer fix
const float rel_heading_deg = degrees(atan2f(temp.ant1.DeltaEast, temp.ant1.DeltaNorth));
calculate_moving_base_yaw(rel_heading_deg,
Vector3f(temp.ant1.DeltaNorth, temp.ant1.DeltaEast, temp.ant1.DeltaUp).length(),
-temp.ant1.DeltaUp);
}
}
#endif
break;
}
case BaseVectorGeod:
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal" // suppress -Wfloat-equal as it's false positive when testing for DNU values
const msg4028 &temp = sbf_msg.data.msg4028u;
// just breakout any consts we need for Do Not Use (DNU) reasons
constexpr double doubleDNU = -2e-10;
constexpr uint16_t uint16DNU = 65535;
check_new_itow(temp.TOW, sbf_msg.length);
if (temp.N == 0) { // no sub blocks so just bail, we can't do anything useful here
state.rtk_num_sats = 0;
state.rtk_age_ms = 0;
state.rtk_baseline_y_mm = 0;
state.rtk_baseline_x_mm = 0;
state.rtk_baseline_z_mm = 0;
break;
}
state.rtk_num_sats = temp.info.NrSV;
state.rtk_age_ms = (temp.info.CorrAge != 65535) ? ((uint32_t)temp.info.CorrAge) * 10 : 0;
// copy the position as long as the data isn't DNU, we require NED, and heading before accepting any of it
if ((temp.info.DeltaEast != doubleDNU) && (temp.info.DeltaNorth != doubleDNU) && (temp.info.DeltaUp != doubleDNU) &&
(temp.info.Azimuth != uint16DNU)) {
state.rtk_baseline_y_mm = temp.info.DeltaEast * 1e3;
state.rtk_baseline_x_mm = temp.info.DeltaNorth * 1e3;
state.rtk_baseline_z_mm = temp.info.DeltaUp * -1e3;
#if GPS_MOVING_BASELINE
// copy the baseline data as a yaw source
if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw)) {
calculate_moving_base_yaw(temp.info.Azimuth * 0.01f + 180.0f,
Vector3f(temp.info.DeltaNorth, temp.info.DeltaEast, temp.info.DeltaUp).length(),
-temp.info.DeltaUp);
}
#endif // GPS_MOVING_BASELINE
} else if (option_set(AP_GPS::DriverOptions::SBF_UseBaseForYaw)) {
state.rtk_baseline_y_mm = 0;
state.rtk_baseline_x_mm = 0;
state.rtk_baseline_z_mm = 0;
state.have_gps_yaw = false;
}
#pragma GCC diagnostic pop
break;
}
}
return false;
}
void AP_GPS_SBF::broadcast_configuration_failure_reason(void) const
{
if (gps._auto_config != AP_GPS::GPS_AUTO_CONFIG_DISABLE &&
config_step != Config_State::Complete) {
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %u: SBF is not fully configured (%u/%u/%u/%u)",
state.instance + 1,
(unsigned)config_step,
_init_blob_index,
(unsigned)ARRAY_SIZE(_initialisation_blob),
(unsigned)ARRAY_SIZE(sbas_on_blob));
}
}
bool AP_GPS_SBF::is_configured (void) const {
return ((gps._auto_config == AP_GPS::GPS_AUTO_CONFIG_DISABLE) ||
(config_step == Config_State::Complete));
}
2017-09-21 22:22:22 -03:00
bool AP_GPS_SBF::is_healthy (void) const {
return (RxError & RX_ERROR_MASK) == 0;
}
void AP_GPS_SBF::mount_disk (void) const {
const char* command = "emd, DSK1, Mount\n";
Debug("Mounting disk");
port->write((const uint8_t*)command, strlen(command));
}
void AP_GPS_SBF::unmount_disk (void) const {
const char* command = "emd, DSK1, Unmount\n";
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_DEBUG, "SBF unmounting disk");
port->write((const uint8_t*)command, strlen(command));
}
bool AP_GPS_SBF::prepare_for_arming(void) {
bool is_logging = true; // assume that its logging until proven otherwise
if (gps._raw_data) {
if (!(RxState & SBF_DISK_MOUNTED)){
is_logging = false;
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF disk is not mounted", state.instance + 1);
// simply attempt to mount the disk, no need to check if the command was
2017-12-04 20:48:36 -04:00
// ACK/NACK'd as we don't continuously attempt to remount the disk
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: Attempting to mount disk", state.instance + 1);
mount_disk();
// reset the flag to indicate if we should be logging
_has_been_armed = false;
}
else if (RxState & SBF_DISK_FULL) {
is_logging = false;
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF disk is full", state.instance + 1);
}
else if (!(RxState & SBF_DISK_ACTIVITY)) {
is_logging = false;
2020-03-29 19:49:53 -03:00
GCS_SEND_TEXT(MAV_SEVERITY_INFO, "GPS %d: SBF is not currently logging", state.instance + 1);
}
}
return is_logging;
}
#endif