Ardupilot2/libraries/AP_HAL_F4Light/Storage.cpp

307 lines
8.1 KiB
C++
Raw Normal View History

/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
(c) 2017 night_ghost@ykoctpa.ru
This uses 2*16k pages of FLASH ROM to emulate an EEPROM
This storage is retained after power down, and survives reloading of firmware via bootloader
All multi-byte accesses are reduced to single byte access so that can span EEPROM block boundaries
http://www.st.com/content/ccc/resource/technical/document/application_note/ec/dd/8e/a8/39/49/4f/e5/DM00036065.pdf/files/DM00036065.pdf/jcr:content/translations/en.DM00036065.pdf
problems of such design
http://ithare.com/journaled-flash-storage-emulating-eeprom-over-flash-acid-transactions-and-more-part-ii-existing-implementations-by-atmel-silabs-ti-stm-and-microchip/
"partial write" problem fixed by requiring that highest bit of address should be 0
*/
#include <AP_HAL/AP_HAL.h>
#if CONFIG_HAL_BOARD == HAL_BOARD_F4LIGHT
#pragma GCC optimize ("O2")
#include <string.h>
#include "Storage.h"
#include "EEPROM.h"
#include "Scheduler.h"
using namespace F4Light;
extern const AP_HAL::HAL& hal;
// The EEPROM class uses 2x16k FLASH ROM pages to emulate up to 8k of EEPROM.
#if defined(WRITE_IN_THREAD)
volatile uint16_t Storage::rd_ptr = 0;
volatile uint16_t Storage::wr_ptr = 0;
Storage::Item Storage::queue[EEPROM_QUEUE_LEN] IN_CCM;
void *Storage::_task;
#endif
#if defined(EEPROM_CACHED)
uint8_t Storage::eeprom_buffer[BOARD_STORAGE_SIZE] IN_CCM;
#endif
// This is the size of each FLASH ROM page
const uint32_t pageSize = 0x4000; // real page size
// This defines the base addresses of the 2 FLASH ROM pages that will be used to emulate EEPROM
// These are the 2 16k pages in the FLASH ROM address space on the STM32F4 used by HAL
// This will effectively provide a total of 8kb of emulated EEPROM storage
const uint32_t pageBase0 = 0x08008000; // Page2
const uint32_t pageBase1 = 0x0800c000; // Page3
// it is possible to move EEPROM area to sectors 1&2 to free sector 3 for code (firmware from 0x0800c000)
// or use 3 sectors for EEPROM as wear leveling
static EEPROMClass eeprom IN_CCM;
bool Storage::write_deferred IN_CCM;
Storage::Storage()
{}
void Storage::late_init(bool defer) {
write_deferred = defer;
Scheduler::register_on_disarm( Scheduler::get_handler(do_on_disarm) );
}
void Storage::error_parse(uint16_t status){
switch(status) {
case EEPROM_NO_VALID_PAGE: // despite repeated attempts, EEPROM does not work, but should
AP_HAL::panic("EEPROM Error: no valid page\r\n");
break;
case EEPROM_OUT_SIZE:
AP_HAL::panic("EEPROM Error: full\r\n");
break;
case EEPROM_BAD_FLASH: //
AP_HAL::panic("EEPROM Error: page not empty after erase\r\n");
break;
case EEPROM_WRITE_FAILED:
AP_HAL::panic("EEPROM Error: write failed\r\n");
break;
case EEPROM_BAD_ADDRESS: // just not found
case EEPROM_NOT_INIT: // can't be
default:
break; // all OK
}
}
void Storage::init()
{
eeprom.init(pageBase1, pageBase0, pageSize);
#if defined(EEPROM_CACHED)
uint16_t i;
for(i=0; i<BOARD_STORAGE_SIZE;i+=2){ // read out all data to RAM buffer
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align" // yes I know
error_parse( eeprom.read(i >> 1, (uint16_t *)&eeprom_buffer[i]));
#pragma GCC diagnostic pop
}
#endif
_task = Scheduler::start_task(write_thread, 512); // small stack
if(_task){
Scheduler::set_task_priority(_task, MAIN_PRIORITY+2); // slightly less
}
}
uint8_t Storage::read_byte(uint16_t loc){
#if defined(EEPROM_CACHED)
return eeprom_buffer[loc];
#else
return _read_byte(loc);
#endif
}
uint8_t Storage::_read_byte(uint16_t loc){
// 'bytes' are packed 2 per word
// Read existing dataword and use upper or lower byte
uint16_t data;
error_parse( eeprom.read(loc >> 1, &data) );
if (loc & 1)
return data >> 8; // Odd, upper byte
else
return data & 0xff; // Even lower byte
}
void Storage::read_block(void* dst, uint16_t loc, size_t n) {
#if defined(EEPROM_CACHED)
memmove(dst, &eeprom_buffer[loc], n);
#else
// Treat as a block of bytes
uint8_t *ptr_b=(uint8_t *)dst;
if(loc & 1){
*ptr_b++ = read_byte(loc++);
n--;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
uint16_t *ptr_w=(uint16_t *)ptr_b;
#pragma GCC diagnostic pop
while(n>=2){
error_parse( eeprom.read(loc >> 1, ptr_w++) );
loc+=2;
n-=2;
}
if(n){
ptr_b=(uint8_t *)ptr_w;
*ptr_b = read_byte(loc);
}
#endif
}
void Storage::write_byte(uint16_t loc, uint8_t value){
#if defined(EEPROM_CACHED)
if(eeprom_buffer[loc]==value) return;
eeprom_buffer[loc]=value;
if(write_deferred && hal.util->get_soft_armed()) return; // no changes in EEPROM, just in memory
#endif
_write_byte(loc,value);
}
void Storage::_write_byte(uint16_t loc, uint8_t value){
// 'bytes' are packed 2 per word
// Read existing data word and change upper or lower byte
uint16_t data;
#if defined(EEPROM_CACHED)
memmove(&data,&eeprom_buffer[loc & ~1], 2); // read current value from cache
#else
error_parse(eeprom.read(loc >> 1, &data)); // read current value
#endif
if (loc & 1)
data = (data & 0x00ff) | (value << 8); // Odd, upper byte
else
data = (data & 0xff00) | value; // Even, lower byte
write_word(loc >> 1, data);
}
void Storage::write_block(uint16_t loc, const void* src, size_t n)
{
#if defined(EEPROM_CACHED)
memmove(&eeprom_buffer[loc], src, n);
if(write_deferred && hal.util->get_soft_armed()) return; // no changes in EEPROM, just in memory
#endif
uint8_t *ptr_b = (uint8_t *)src; // Treat as a block of bytes
if(loc & 1){
_write_byte(loc++, *ptr_b++); // odd byte
n--;
}
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
uint16_t *ptr_w = (uint16_t *)ptr_b; // Treat as a block of words
#pragma GCC diagnostic pop
while(n>=2){
write_word(loc >> 1, *ptr_w++);
loc+=2;
n-=2;
}
if(n){ // the last one
ptr_b=(uint8_t *)ptr_w;
_write_byte(loc, *ptr_b); // odd byte
}
}
void Storage::do_on_disarm(){ // save changes to EEPROM
uint16_t i;
for(i=0; i<BOARD_STORAGE_SIZE; i+=2){
uint16_t data;
error_parse(eeprom.read(i >> 1, &data));
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wcast-align"
uint16_t b_data = *((uint16_t *)&eeprom_buffer[i]);
#pragma GCC diagnostic pop
if(b_data!=data){
write_word(i >> 1, b_data);
}
}
}
void Storage::write_word(uint16_t loc, uint16_t data){
#if defined(WRITE_IN_THREAD)
Item &d = queue[wr_ptr];
d.loc=loc;
d.val=data;
uint16_t new_wp = wr_ptr+1;
if(new_wp >= EEPROM_QUEUE_LEN) { // move write pointer
new_wp=0; // ring
}
while(new_wp == rd_ptr) { // buffer overflow
hal_yield(300); // wait for place
}
wr_ptr=new_wp; // move forward
Scheduler::set_task_active(_task); // activate write thread
#else
error_parse(eeprom.write(loc, data));
#endif
}
#if defined(WRITE_IN_THREAD)
void Storage::write_thread(){
while(rd_ptr != wr_ptr) { // there are items
Item d = queue[rd_ptr++]; // get data and move to next item
if(rd_ptr >= EEPROM_QUEUE_LEN) { // move write pointer
rd_ptr=0; // ring
}
error_parse(eeprom.write(d.loc, d.val));
}
}
#endif
#endif