Ardupilot2/APMrover2/Steering.cpp

255 lines
8.4 KiB
C++
Raw Normal View History

2015-05-13 00:16:45 -03:00
#include "Rover.h"
/*
check for triggering of start of auto mode
*/
bool Rover::auto_check_trigger(void) {
// only applies to AUTO mode
if (control_mode != AUTO) {
return true;
}
// check for user pressing the auto trigger to off
if (auto_triggered && g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 1) {
gcs_send_text(MAV_SEVERITY_WARNING, "AUTO triggered off");
auto_triggered = false;
return false;
}
// if already triggered, then return true, so you don't
// need to hold the switch down
if (auto_triggered) {
return true;
}
2015-05-04 23:34:02 -03:00
if (g.auto_trigger_pin == -1 && is_zero(g.auto_kickstart)) {
// no trigger configured - let's go!
auto_triggered = true;
return true;
}
if (g.auto_trigger_pin != -1 && check_digital_pin(g.auto_trigger_pin) == 0) {
gcs_send_text(MAV_SEVERITY_WARNING, "Triggered AUTO with pin");
auto_triggered = true;
return true;
}
2015-05-04 23:34:02 -03:00
if (!is_zero(g.auto_kickstart)) {
2017-01-31 06:12:26 -04:00
const float xaccel = ins.get_accel().x;
if (xaccel >= g.auto_kickstart) {
2017-03-30 11:07:24 -03:00
gcs_send_text_fmt(MAV_SEVERITY_WARNING, "Triggered AUTO xaccel=%.1f", static_cast<double>(xaccel));
auto_triggered = true;
return true;
}
}
return false;
}
/*
work out if we are going to use pivot steering
*/
bool Rover::use_pivot_steering(void)
{
// check cases where we clearly cannot use pivot steering
if (control_mode < AUTO || !g2.motors.have_skid_steering() || g.pivot_turn_angle <= 0) {
pivot_steering_active = false;
return false;
}
// calc bearing error
const int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100;
// if error is larger than pivot_turn_angle start pivot steering
if (bearing_error > g.pivot_turn_angle) {
pivot_steering_active = true;
return true;
}
// if within 10 degrees of the target heading, exit pivot steering
if (bearing_error < 10) {
pivot_steering_active = false;
return false;
}
// by default stay in
return pivot_steering_active;
}
/*
test if we are loitering AND should be stopped at a waypoint
*/
bool Rover::in_stationary_loiter()
{
// Confirm we are in AUTO mode and need to loiter for a time period
if ((loiter_start_time > 0) && (control_mode == AUTO)) {
// Check if active loiter is enabled AND we are outside the waypoint loiter radius
// then the vehicle still needs to move so return false
if (active_loiter && (wp_distance > g.waypoint_radius)) {
return false;
}
return true;
}
return false;
}
/*
calculate the throtte for auto-throttle modes
*/
void Rover::calc_throttle(float target_speed) {
// If not autostarting OR we are loitering at a waypoint
// then set the throttle to minimum
if (!auto_check_trigger() || in_stationary_loiter()) {
g2.motors.set_throttle(g.throttle_min.get());
// Stop rotation in case of loitering and skid steering
if (g2.motors.have_skid_steering()) {
g2.motors.set_steering(0);
}
return;
}
2017-01-31 06:12:26 -04:00
const float throttle_base = (fabsf(target_speed) / g.speed_cruise) * g.throttle_cruise;
const int throttle_target = throttle_base + throttle_nudge;
/*
reduce target speed in proportion to turning rate, up to the
SPEED_TURN_GAIN percentage.
*/
float steer_rate = fabsf(lateral_acceleration / (g.turn_max_g*GRAVITY_MSS));
steer_rate = constrain_float(steer_rate, 0.0f, 1.0f);
// use g.speed_turn_gain for a 90 degree turn, and in proportion
// for other turn angles
2017-01-31 06:12:26 -04:00
const int32_t turn_angle = wrap_180_cd(next_navigation_leg_cd - ahrs.yaw_sensor);
const float speed_turn_ratio = constrain_float(fabsf(turn_angle / 9000.0f), 0.0f, 1.0f);
2017-01-31 06:12:26 -04:00
const float speed_turn_reduction = (100 - g.speed_turn_gain) * speed_turn_ratio * 0.01f;
2017-01-16 05:18:55 -04:00
float reduction = 1.0f - steer_rate * speed_turn_reduction;
2017-05-03 11:21:58 -03:00
if (control_mode >= AUTO && guided_mode != Guided_Velocity && wp_distance <= g.speed_turn_dist) {
// in auto-modes we reduce speed when approaching waypoints
2017-01-31 06:12:26 -04:00
const float reduction2 = 1.0f - speed_turn_reduction;
if (reduction2 < reduction) {
reduction = reduction2;
}
}
// reduce the target speed by the reduction factor
target_speed *= reduction;
groundspeed_error = fabsf(target_speed) - ground_speed;
throttle = throttle_target + (g.pidSpeedThrottle.get_pid(groundspeed_error * 100.0f) / 100.0f);
// also reduce the throttle by the reduction factor. This gives a
// much faster response in turns
throttle *= reduction;
if (in_reverse) {
g2.motors.set_throttle(constrain_int16(-throttle, -g.throttle_max, -g.throttle_min));
} else {
g2.motors.set_throttle(constrain_int16(throttle, g.throttle_min, g.throttle_max));
}
if (!in_reverse && g.braking_percent != 0 && groundspeed_error < -g.braking_speederr) {
// the user has asked to use reverse throttle to brake. Apply
// it in proportion to the ground speed error, but only when
// our ground speed error is more than BRAKING_SPEEDERR.
//
// We use a linear gain, with 0 gain at a ground speed error
// of braking_speederr, and 100% gain when groundspeed_error
// is 2*braking_speederr
const float brake_gain = constrain_float(((-groundspeed_error)-g.braking_speederr)/g.braking_speederr, 0.0f, 1.0f);
2017-01-31 06:12:26 -04:00
const int16_t braking_throttle = g.throttle_max * (g.braking_percent * 0.01f) * brake_gain;
g2.motors.set_throttle(constrain_int16(-braking_throttle, -g.throttle_max, -g.throttle_min));
// temporarily set us in reverse to allow the PWM setting to
// go negative
set_reverse(true);
}
2017-05-03 11:21:58 -03:00
if (guided_mode != Guided_Velocity) {
if (use_pivot_steering()) {
2017-06-20 10:54:41 -03:00
// In Guided Velocity, only the steering input is used to calculate the pivot turn.
g2.motors.set_throttle(0);
2017-05-03 11:21:58 -03:00
}
}
}
/*****************************************
Calculate desired turn angles (in medium freq loop)
*****************************************/
void Rover::calc_lateral_acceleration() {
switch (control_mode) {
case AUTO:
// If we have reached the waypoint previously navigate
// back to it from our current position
if (previously_reached_wp && (loiter_duration > 0)) {
nav_controller->update_waypoint(current_loc, next_WP);
} else {
nav_controller->update_waypoint(prev_WP, next_WP);
}
break;
case RTL:
case GUIDED:
case STEERING:
nav_controller->update_waypoint(current_loc, next_WP);
break;
default:
return;
}
// Calculate the required turn of the wheels
// negative error = left turn
// positive error = right turn
lateral_acceleration = nav_controller->lateral_acceleration();
if (use_pivot_steering()) {
2017-01-31 06:12:26 -04:00
const int16_t bearing_error = wrap_180_cd(nav_controller->target_bearing_cd() - ahrs.yaw_sensor) / 100;
if (bearing_error > 0) {
2017-01-16 05:18:55 -04:00
lateral_acceleration = g.turn_max_g * GRAVITY_MSS;
} else {
2017-01-16 05:18:55 -04:00
lateral_acceleration = -g.turn_max_g * GRAVITY_MSS;
}
}
}
/*
calculate steering angle given lateral_acceleration
*/
void Rover::calc_nav_steer() {
// check to see if the rover is loitering
if (in_stationary_loiter()) {
g2.motors.set_steering(0);
return;
}
// add in obstacle avoidance
if (!in_reverse) {
lateral_acceleration += (obstacle.turn_angle/45.0f) * g.turn_max_g;
}
// constrain to max G force
2017-01-16 05:18:55 -04:00
lateral_acceleration = constrain_float(lateral_acceleration, -g.turn_max_g * GRAVITY_MSS, g.turn_max_g * GRAVITY_MSS);
g2.motors.set_steering(steerController.get_steering_out_lat_accel(lateral_acceleration));
}
/*****************************************
Set the flight control servos based on the current calculated values
*****************************************/
void Rover::set_servos(void) {
2017-06-20 10:54:41 -03:00
// Apply slew rate limit on non Manual modes
if (control_mode != MANUAL && control_mode != LEARNING) {
g2.motors.slew_limit_throttle(true);
} else {
g2.motors.slew_limit_throttle(false);
}
// send output signals to motors
g2.motors.output(arming.is_armed() && hal.util->get_soft_armed(), G_Dt);
}