Ardupilot2/Blimp/GCS_Mavlink.cpp

978 lines
34 KiB
C++
Raw Normal View History

#include "Blimp.h"
#include "GCS_Mavlink.h"
/*
* !!NOTE!!
*
* the use of NOINLINE separate functions for each message type avoids
* a compiler bug in gcc that would cause it to use far more stack
* space than is needed. Without the NOINLINE we use the sum of the
* stack needed for each message type. Please be careful to follow the
* pattern below when adding any new messages
*/
MAV_TYPE GCS_Blimp::frame_type() const
{
return blimp.get_frame_mav_type();
}
MAV_MODE GCS_MAVLINK_Blimp::base_mode() const
{
uint8_t _base_mode = MAV_MODE_FLAG_STABILIZE_ENABLED;
// work out the base_mode. This value is not very useful
// for APM, but we calculate it as best we can so a generic
// MAVLink enabled ground station can work out something about
// what the MAV is up to. The actual bit values are highly
// ambiguous for most of the APM flight modes. In practice, you
// only get useful information from the custom_mode, which maps to
// the APM flight mode and has a well defined meaning in the
// ArduPlane documentation
// switch (blimp.control_mode) {
// case Mode::Number::AUTO:
// case Mode::Number::RTL:
// case Mode::Number::LOITER:
// case Mode::Number::AVOID_ADSB:
// case Mode::Number::FOLLOW:
// case Mode::Number::GUIDED:
// case Mode::Number::CIRCLE:
// case Mode::Number::POSHOLD:
// case Mode::Number::BRAKE:
// case Mode::Number::SMART_RTL:
// _base_mode |= MAV_MODE_FLAG_GUIDED_ENABLED;
// // note that MAV_MODE_FLAG_AUTO_ENABLED does not match what
// // APM does in any mode, as that is defined as "system finds its own goal
// // positions", which APM does not currently do
// break;
// default:
// break;
// }
// all modes except INITIALISING have some form of manual
// override if stick mixing is enabled
_base_mode |= MAV_MODE_FLAG_MANUAL_INPUT_ENABLED;
#if HIL_MODE != HIL_MODE_DISABLED
_base_mode |= MAV_MODE_FLAG_HIL_ENABLED;
#endif
// we are armed if we are not initialising
if (blimp.motors != nullptr && blimp.motors->armed()) {
_base_mode |= MAV_MODE_FLAG_SAFETY_ARMED;
}
// indicate we have set a custom mode
_base_mode |= MAV_MODE_FLAG_CUSTOM_MODE_ENABLED;
return (MAV_MODE)_base_mode;
}
uint32_t GCS_Blimp::custom_mode() const
{
return (uint32_t)blimp.control_mode;
}
MAV_STATE GCS_MAVLINK_Blimp::vehicle_system_status() const
{
// set system as critical if any failsafe have triggered
if (blimp.any_failsafe_triggered()) {
return MAV_STATE_CRITICAL;
}
if (blimp.ap.land_complete) {
return MAV_STATE_STANDBY;
}
return MAV_STATE_ACTIVE;
}
void GCS_MAVLINK_Blimp::send_position_target_global_int()
{
Location target;
if (!blimp.flightmode->get_wp(target)) {
return;
}
mavlink_msg_position_target_global_int_send(
chan,
AP_HAL::millis(), // time_boot_ms
MAV_FRAME_GLOBAL, // targets are always global altitude
0xFFF8, // ignore everything except the x/y/z components
target.lat, // latitude as 1e7
target.lng, // longitude as 1e7
target.alt * 0.01f, // altitude is sent as a float
0.0f, // vx
0.0f, // vy
0.0f, // vz
0.0f, // afx
0.0f, // afy
0.0f, // afz
0.0f, // yaw
0.0f); // yaw_rate
}
// void GCS_MAVLINK_Blimp::send_position_target_local_ned()
// {
// #if MODE_GUIDED_ENABLED == ENABLED
// if (!blimp.flightmode->in_guided_mode()) {
// return;
// }
// const GuidedMode guided_mode = blimp.mode_guided.mode();
// Vector3f target_pos;
// Vector3f target_vel;
// uint16_t type_mask;
// if (guided_mode == Guided_WP) {
// type_mask = 0x0FF8; // ignore everything except position
// target_pos = blimp.wp_nav->get_wp_destination() * 0.01f; // convert to metres
// } else if (guided_mode == Guided_Velocity) {
// type_mask = 0x0FC7; // ignore everything except velocity
// target_vel = blimp.flightmode->get_desired_velocity() * 0.01f; // convert to m/s
// } else {
// type_mask = 0x0FC0; // ignore everything except position & velocity
// target_pos = blimp.wp_nav->get_wp_destination() * 0.01f;
// target_vel = blimp.flightmode->get_desired_velocity() * 0.01f;
// }
// mavlink_msg_position_target_local_ned_send(
// chan,
// AP_HAL::millis(), // time boot ms
// MAV_FRAME_LOCAL_NED,
// type_mask,
// target_pos.x, // x in metres
// target_pos.y, // y in metres
// -target_pos.z, // z in metres NED frame
// target_vel.x, // vx in m/s
// target_vel.y, // vy in m/s
// -target_vel.z, // vz in m/s NED frame
// 0.0f, // afx
// 0.0f, // afy
// 0.0f, // afz
// 0.0f, // yaw
// 0.0f); // yaw_rate
// #endif
// }
void GCS_MAVLINK_Blimp::send_nav_controller_output() const
{
// if (!blimp.ap.initialised) {
// return;
// }
// const Vector3f &targets = blimp.attitude_control->get_att_target_euler_cd();
// const Mode *flightmode = blimp.flightmode;
// mavlink_msg_nav_controller_output_send(
// chan,
// targets.x * 1.0e-2f,
// targets.y * 1.0e-2f,
// targets.z * 1.0e-2f,
// flightmode->wp_bearing() * 1.0e-2f,
// MIN(flightmode->wp_distance() * 1.0e-2f, UINT16_MAX),
// blimp.pos_control->get_alt_error() * 1.0e-2f,
// 0,
// flightmode->crosstrack_error() * 1.0e-2f);
}
float GCS_MAVLINK_Blimp::vfr_hud_airspeed() const
{
Vector3f airspeed_vec_bf;
if (AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// we are running the EKF3 wind estimation code which can give
// us an airspeed estimate
return airspeed_vec_bf.length();
}
return AP::gps().ground_speed();
}
int16_t GCS_MAVLINK_Blimp::vfr_hud_throttle() const
{
if (blimp.motors == nullptr) {
return 0;
}
return (int16_t)(blimp.motors->get_throttle() * 100);
}
/*
send PID tuning message
*/
void GCS_MAVLINK_Blimp::send_pid_tuning()
{
static const PID_TUNING_AXIS axes[] = {
PID_TUNING_ROLL,
PID_TUNING_PITCH,
PID_TUNING_YAW,
PID_TUNING_ACCZ
};
for (uint8_t i=0; i<ARRAY_SIZE(axes); i++) {
if (!(blimp.g.gcs_pid_mask & (1<<(axes[i]-1)))) {
continue;
}
if (!HAVE_PAYLOAD_SPACE(chan, PID_TUNING)) {
return;
}
const AP_Logger::PID_Info *pid_info = nullptr;
switch (axes[i]) { //MIR Temp
// case PID_TUNING_ROLL:
// pid_info = &blimp.attitude_control->get_rate_roll_pid().get_pid_info();
// break;
// case PID_TUNING_PITCH:
// pid_info = &blimp.attitude_control->get_rate_pitch_pid().get_pid_info();
// break;
// case PID_TUNING_YAW:
// pid_info = &blimp.attitude_control->get_rate_yaw_pid().get_pid_info();
// break;
// case PID_TUNING_ACCZ:
// pid_info = &blimp.pos_control->get_accel_z_pid().get_pid_info();
// break;
default:
continue;
}
if (pid_info != nullptr) {
mavlink_msg_pid_tuning_send(chan,
axes[i],
pid_info->target,
pid_info->actual,
pid_info->FF,
pid_info->P,
pid_info->I,
pid_info->D);
}
}
}
uint8_t GCS_MAVLINK_Blimp::sysid_my_gcs() const
{
return blimp.g.sysid_my_gcs;
}
bool GCS_MAVLINK_Blimp::sysid_enforce() const
{
return blimp.g2.sysid_enforce;
}
uint32_t GCS_MAVLINK_Blimp::telem_delay() const
{
return (uint32_t)(blimp.g.telem_delay);
}
bool GCS_Blimp::vehicle_initialised() const
{
return blimp.ap.initialised;
}
// try to send a message, return false if it wasn't sent
bool GCS_MAVLINK_Blimp::try_send_message(enum ap_message id)
{
switch (id) {
case MSG_WIND:
CHECK_PAYLOAD_SIZE(WIND);
send_wind();
break;
case MSG_SERVO_OUT:
case MSG_AOA_SSA:
case MSG_LANDING:
case MSG_ADSB_VEHICLE:
// unused
break;
default:
return GCS_MAVLINK::try_send_message(id);
}
return true;
}
const AP_Param::GroupInfo GCS_MAVLINK_Parameters::var_info[] = {
// @Param: RAW_SENS
// @DisplayName: Raw sensor stream rate
// @Description: Stream rate of RAW_IMU, SCALED_IMU2, SCALED_IMU3, SCALED_PRESSURE, SCALED_PRESSURE2, SCALED_PRESSURE3 and SENSOR_OFFSETS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_SENS", 0, GCS_MAVLINK_Parameters, streamRates[0], 0),
// @Param: EXT_STAT
// @DisplayName: Extended status stream rate to ground station
// @Description: Stream rate of SYS_STATUS, POWER_STATUS, MEMINFO, CURRENT_WAYPOINT, GPS_RAW_INT, GPS_RTK (if available), GPS2_RAW (if available), GPS2_RTK (if available), NAV_CONTROLLER_OUTPUT, and FENCE_STATUS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXT_STAT", 1, GCS_MAVLINK_Parameters, streamRates[1], 0),
// @Param: RC_CHAN
// @DisplayName: RC Channel stream rate to ground station
// @Description: Stream rate of SERVO_OUTPUT_RAW and RC_CHANNELS to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RC_CHAN", 2, GCS_MAVLINK_Parameters, streamRates[2], 0),
// @Param: RAW_CTRL
// @DisplayName: Raw Control stream rate to ground station
// @Description: Stream rate of RC_CHANNELS_SCALED (HIL only) to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("RAW_CTRL", 3, GCS_MAVLINK_Parameters, streamRates[3], 0),
// @Param: POSITION
// @DisplayName: Position stream rate to ground station
// @Description: Stream rate of GLOBAL_POSITION_INT and LOCAL_POSITION_NED to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("POSITION", 4, GCS_MAVLINK_Parameters, streamRates[4], 0),
// @Param: EXTRA1
// @DisplayName: Extra data type 1 stream rate to ground station
// @Description: Stream rate of ATTITUDE, SIMSTATE (SITL only), AHRS2 and PID_TUNING to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA1", 5, GCS_MAVLINK_Parameters, streamRates[5], 0),
// @Param: EXTRA2
// @DisplayName: Extra data type 2 stream rate to ground station
// @Description: Stream rate of VFR_HUD to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA2", 6, GCS_MAVLINK_Parameters, streamRates[6], 0),
// @Param: EXTRA3
// @DisplayName: Extra data type 3 stream rate to ground station
// @Description: Stream rate of AHRS, HWSTATUS, SYSTEM_TIME, RANGEFINDER, DISTANCE_SENSOR, TERRAIN_REQUEST, BATTERY2, MOUNT_STATUS, OPTICAL_FLOW, GIMBAL_REPORT, MAG_CAL_REPORT, MAG_CAL_PROGRESS, EKF_STATUS_REPORT, VIBRATION and RPM to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("EXTRA3", 7, GCS_MAVLINK_Parameters, streamRates[7], 0),
// @Param: PARAMS
// @DisplayName: Parameter stream rate to ground station
// @Description: Stream rate of PARAM_VALUE to ground station
// @Units: Hz
// @Range: 0 10
// @Increment: 1
// @User: Advanced
AP_GROUPINFO("PARAMS", 8, GCS_MAVLINK_Parameters, streamRates[8], 0),
AP_GROUPEND
};
static const ap_message STREAM_RAW_SENSORS_msgs[] = {
MSG_RAW_IMU,
MSG_SCALED_IMU2,
MSG_SCALED_IMU3,
MSG_SCALED_PRESSURE,
MSG_SCALED_PRESSURE2,
MSG_SCALED_PRESSURE3,
MSG_SENSOR_OFFSETS
};
static const ap_message STREAM_EXTENDED_STATUS_msgs[] = {
MSG_SYS_STATUS,
MSG_POWER_STATUS,
MSG_MEMINFO,
MSG_CURRENT_WAYPOINT, // MISSION_CURRENT
MSG_GPS_RAW,
MSG_GPS_RTK,
MSG_GPS2_RAW,
MSG_GPS2_RTK,
MSG_NAV_CONTROLLER_OUTPUT,
MSG_FENCE_STATUS,
MSG_POSITION_TARGET_GLOBAL_INT,
};
static const ap_message STREAM_POSITION_msgs[] = {
MSG_LOCATION,
MSG_LOCAL_POSITION
};
static const ap_message STREAM_RC_CHANNELS_msgs[] = {
MSG_SERVO_OUTPUT_RAW,
MSG_RC_CHANNELS,
MSG_RC_CHANNELS_RAW, // only sent on a mavlink1 connection
};
static const ap_message STREAM_EXTRA1_msgs[] = {
MSG_ATTITUDE,
MSG_SIMSTATE,
MSG_AHRS2,
MSG_PID_TUNING // Up to four PID_TUNING messages are sent, depending on GCS_PID_MASK parameter
};
static const ap_message STREAM_EXTRA2_msgs[] = {
MSG_VFR_HUD
};
static const ap_message STREAM_EXTRA3_msgs[] = {
MSG_AHRS,
MSG_HWSTATUS,
MSG_SYSTEM_TIME,
MSG_WIND,
MSG_RANGEFINDER,
MSG_DISTANCE_SENSOR,
MSG_BATTERY2,
MSG_BATTERY_STATUS,
MSG_MOUNT_STATUS,
MSG_OPTICAL_FLOW,
MSG_GIMBAL_REPORT,
MSG_MAG_CAL_REPORT,
MSG_MAG_CAL_PROGRESS,
MSG_EKF_STATUS_REPORT,
MSG_VIBRATION,
MSG_RPM,
MSG_ESC_TELEMETRY,
MSG_GENERATOR_STATUS,
};
static const ap_message STREAM_PARAMS_msgs[] = {
MSG_NEXT_PARAM
};
static const ap_message STREAM_ADSB_msgs[] = {
MSG_ADSB_VEHICLE
};
const struct GCS_MAVLINK::stream_entries GCS_MAVLINK::all_stream_entries[] = {
MAV_STREAM_ENTRY(STREAM_RAW_SENSORS),
MAV_STREAM_ENTRY(STREAM_EXTENDED_STATUS),
MAV_STREAM_ENTRY(STREAM_POSITION),
MAV_STREAM_ENTRY(STREAM_RC_CHANNELS),
MAV_STREAM_ENTRY(STREAM_EXTRA1),
MAV_STREAM_ENTRY(STREAM_EXTRA2),
MAV_STREAM_ENTRY(STREAM_EXTRA3),
MAV_STREAM_ENTRY(STREAM_ADSB),
MAV_STREAM_ENTRY(STREAM_PARAMS),
MAV_STREAM_TERMINATOR // must have this at end of stream_entries
};
bool GCS_MAVLINK_Blimp::handle_guided_request(AP_Mission::Mission_Command &cmd)
{
// #if MODE_AUTO_ENABLED == ENABLED
// // return blimp.mode_auto.do_guided(cmd);
// #else
return false;
// #endif
}
void GCS_MAVLINK_Blimp::handle_change_alt_request(AP_Mission::Mission_Command &cmd)
{
// add home alt if needed
if (cmd.content.location.relative_alt) {
cmd.content.location.alt += blimp.ahrs.get_home().alt;
}
// To-Do: update target altitude for loiter or waypoint controller depending upon nav mode
}
void GCS_MAVLINK_Blimp::packetReceived(const mavlink_status_t &status,
const mavlink_message_t &msg)
{
GCS_MAVLINK::packetReceived(status, msg);
}
bool GCS_MAVLINK_Blimp::params_ready() const
{
if (AP_BoardConfig::in_config_error()) {
// we may never have parameters "initialised" in this case
return true;
}
// if we have not yet initialised (including allocating the motors
// object) we drop this request. That prevents the GCS from getting
// a confusing parameter count during bootup
return blimp.ap.initialised_params;
}
void GCS_MAVLINK_Blimp::send_banner()
{
GCS_MAVLINK::send_banner();
send_text(MAV_SEVERITY_INFO, "Frame: %s", blimp.get_frame_string());
}
// a RC override message is considered to be a 'heartbeat' from the ground station for failsafe purposes
void GCS_MAVLINK_Blimp::handle_rc_channels_override(const mavlink_message_t &msg)
{
blimp.failsafe.last_heartbeat_ms = AP_HAL::millis();
GCS_MAVLINK::handle_rc_channels_override(msg);
}
void GCS_MAVLINK_Blimp::handle_command_ack(const mavlink_message_t &msg)
{
blimp.command_ack_counter++;
GCS_MAVLINK::handle_command_ack(msg);
}
MAV_RESULT GCS_MAVLINK_Blimp::_handle_command_preflight_calibration(const mavlink_command_long_t &packet)
{
return GCS_MAVLINK::_handle_command_preflight_calibration(packet);
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_do_set_roi(const Location &roi_loc)
{
if (!roi_loc.check_latlng()) {
return MAV_RESULT_FAILED;
}
// blimp.flightmode->auto_yaw.set_roi(roi_loc);
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_preflight_reboot(const mavlink_command_long_t &packet)
{
// call parent
return GCS_MAVLINK::handle_preflight_reboot(packet);
}
bool GCS_MAVLINK_Blimp::set_home_to_current_location(bool _lock)
{
return blimp.set_home_to_current_location(_lock);
}
bool GCS_MAVLINK_Blimp::set_home(const Location& loc, bool _lock)
{
return blimp.set_home(loc, _lock);
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_do_reposition(const mavlink_command_int_t &packet)
{
const bool change_modes = ((int32_t)packet.param2 & MAV_DO_REPOSITION_FLAGS_CHANGE_MODE) == MAV_DO_REPOSITION_FLAGS_CHANGE_MODE;
if (!blimp.flightmode->in_guided_mode() && !change_modes) {
return MAV_RESULT_DENIED;
}
// sanity check location
if (!check_latlng(packet.x, packet.y)) {
return MAV_RESULT_DENIED;
}
Location request_location {};
request_location.lat = packet.x;
request_location.lng = packet.y;
if (fabsf(packet.z) > LOCATION_ALT_MAX_M) {
return MAV_RESULT_DENIED;
}
Location::AltFrame frame;
if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.frame, frame)) {
return MAV_RESULT_DENIED; // failed as the location is not valid
}
request_location.set_alt_cm((int32_t)(packet.z * 100.0f), frame);
if (request_location.sanitize(blimp.current_loc)) {
// if the location wasn't already sane don't load it
return MAV_RESULT_DENIED; // failed as the location is not valid
}
return MAV_RESULT_ACCEPTED;
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_int_packet(const mavlink_command_int_t &packet)
{
switch (packet.command) {
case MAV_CMD_DO_FOLLOW:
return MAV_RESULT_UNSUPPORTED;
case MAV_CMD_DO_REPOSITION:
return handle_command_int_do_reposition(packet);
default:
return GCS_MAVLINK::handle_command_int_packet(packet);
}
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_mount(const mavlink_command_long_t &packet)
{
// if the mount doesn't do pan control then yaw the entire vehicle instead:
switch (packet.command) {
default:
break;
}
return GCS_MAVLINK::handle_command_mount(packet);
}
MAV_RESULT GCS_MAVLINK_Blimp::handle_command_long_packet(const mavlink_command_long_t &packet)
{
switch (packet.command) {
case MAV_CMD_NAV_TAKEOFF: {
// param3 : horizontal navigation by pilot acceptable
// param4 : yaw angle (not supported)
// param5 : latitude (not supported)
// param6 : longitude (not supported)
// param7 : altitude [metres]
// float takeoff_alt = packet.param7 * 100; // Convert m to cm
// if (!blimp.flightmode->do_user_takeoff(takeoff_alt, is_zero(packet.param3))) {
// return MAV_RESULT_FAILED;
//MIR Do I need this?
// }
return MAV_RESULT_ACCEPTED;
}
// #if MODE_AUTO_ENABLED == ENABLED
// case MAV_CMD_DO_LAND_START:
// if (blimp.mode_auto.mission.jump_to_landing_sequence() && blimp.set_mode(Mode::Number::AUTO, ModeReason::GCS_COMMAND)) {
// return MAV_RESULT_ACCEPTED;
// }
// return MAV_RESULT_FAILED;
// #endif
// case MAV_CMD_NAV_LOITER_UNLIM:
// if (!blimp.set_mode(Mode::Number::LOITER, ModeReason::GCS_COMMAND)) {
// return MAV_RESULT_FAILED;
// }
// return MAV_RESULT_ACCEPTED;
// case MAV_CMD_NAV_RETURN_TO_LAUNCH:
// if (!blimp.set_mode(Mode::Number::RTL, ModeReason::GCS_COMMAND)) {
// return MAV_RESULT_FAILED;
// }
// return MAV_RESULT_ACCEPTED;
case MAV_CMD_CONDITION_YAW:
// param1 : target angle [0-360]
// param2 : speed during change [deg per second]
// param3 : direction (-1:ccw, +1:cw)
// param4 : relative offset (1) or absolute angle (0)
if ((packet.param1 >= 0.0f) &&
(packet.param1 <= 360.0f) &&
(is_zero(packet.param4) || is_equal(packet.param4,1.0f))) {
// blimp.flightmode->auto_yaw.set_fixed_yaw(
// packet.param1,
// packet.param2,
// (int8_t)packet.param3,
// is_positive(packet.param4));
return MAV_RESULT_ACCEPTED;
}
return MAV_RESULT_FAILED;
default:
return GCS_MAVLINK::handle_command_long_packet(packet);
}
}
void GCS_MAVLINK_Blimp::handleMessage(const mavlink_message_t &msg)
{
switch (msg.msgid) {
case MAVLINK_MSG_ID_HEARTBEAT: { // MAV ID: 0
// We keep track of the last time we received a heartbeat from our GCS for failsafe purposes
if (msg.sysid != blimp.g.sysid_my_gcs) {
break;
}
blimp.failsafe.last_heartbeat_ms = AP_HAL::millis();
break;
}
// #if MODE_GUIDED_ENABLED == ENABLED
// case MAVLINK_MSG_ID_SET_ATTITUDE_TARGET: // MAV ID: 82
// {
// // decode packet
// mavlink_set_attitude_target_t packet;
// mavlink_msg_set_attitude_target_decode(&msg, &packet);
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!blimp.flightmode->in_guided_mode()) {
// break;
// }
// // ensure type_mask specifies to use attitude and thrust
// if ((packet.type_mask & ((1<<7)|(1<<6))) != 0) {
// break;
// }
// // check if the message's thrust field should be interpreted as a climb rate or as thrust
// const bool use_thrust = blimp.g2.dev_options.get() & DevOptionSetAttitudeTarget_ThrustAsThrust;
// float climb_rate_or_thrust;
// if (use_thrust) {
// // interpret thrust as thrust
// climb_rate_or_thrust = constrain_float(packet.thrust, -1.0f, 1.0f);
// } else {
// // convert thrust to climb rate
// packet.thrust = constrain_float(packet.thrust, 0.0f, 1.0f);
// if (is_equal(packet.thrust, 0.5f)) {
// climb_rate_or_thrust = 0.0f;
// } else if (packet.thrust > 0.5f) {
// // climb at up to WPNAV_SPEED_UP
// climb_rate_or_thrust = (packet.thrust - 0.5f) * 2.0f * blimp.wp_nav->get_default_speed_up();
// } else {
// // descend at up to WPNAV_SPEED_DN
// climb_rate_or_thrust = (0.5f - packet.thrust) * 2.0f * -fabsf(blimp.wp_nav->get_default_speed_down());
// }
// }
// // if the body_yaw_rate field is ignored, use the commanded yaw position
// // otherwise use the commanded yaw rate
// bool use_yaw_rate = false;
// if ((packet.type_mask & (1<<2)) == 0) {
// use_yaw_rate = true;
// }
// blimp.mode_guided.set_angle(Quaternion(packet.q[0],packet.q[1],packet.q[2],packet.q[3]),
// climb_rate_or_thrust, use_yaw_rate, packet.body_yaw_rate, use_thrust);
// break;
// }
// case MAVLINK_MSG_ID_SET_POSITION_TARGET_LOCAL_NED: // MAV ID: 84
// {
// // decode packet
// mavlink_set_position_target_local_ned_t packet;
// mavlink_msg_set_position_target_local_ned_decode(&msg, &packet);
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!blimp.flightmode->in_guided_mode()) {
// break;
// }
// // check for supported coordinate frames
// if (packet.coordinate_frame != MAV_FRAME_LOCAL_NED &&
// packet.coordinate_frame != MAV_FRAME_LOCAL_OFFSET_NED &&
// packet.coordinate_frame != MAV_FRAME_BODY_NED &&
// packet.coordinate_frame != MAV_FRAME_BODY_OFFSET_NED) {
// break;
// }
// bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
// bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
// bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
// bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
// bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// // exit immediately if acceleration provided
// if (!acc_ignore) {
// break;
// }
// // prepare position
// Vector3f pos_vector;
// if (!pos_ignore) {
// // convert to cm
// pos_vector = Vector3f(packet.x * 100.0f, packet.y * 100.0f, -packet.z * 100.0f);
// // rotate to body-frame if necessary
// if (packet.coordinate_frame == MAV_FRAME_BODY_NED ||
// packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
// blimp.rotate_body_frame_to_NE(pos_vector.x, pos_vector.y);
// }
// // add body offset if necessary
// if (packet.coordinate_frame == MAV_FRAME_LOCAL_OFFSET_NED ||
// packet.coordinate_frame == MAV_FRAME_BODY_NED ||
// packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
// pos_vector += blimp.inertial_nav.get_position();
// }
// }
// // prepare velocity
// Vector3f vel_vector;
// if (!vel_ignore) {
// // convert to cm
// vel_vector = Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f);
// // rotate to body-frame if necessary
// if (packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED) {
// blimp.rotate_body_frame_to_NE(vel_vector.x, vel_vector.y);
// }
// }
// // prepare yaw
// float yaw_cd = 0.0f;
// bool yaw_relative = false;
// float yaw_rate_cds = 0.0f;
// if (!yaw_ignore) {
// yaw_cd = ToDeg(packet.yaw) * 100.0f;
// yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
// }
// if (!yaw_rate_ignore) {
// yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
// }
// // send request
// if (!pos_ignore && !vel_ignore) {
// blimp.mode_guided.set_destination_posvel(pos_vector, vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// } else if (pos_ignore && !vel_ignore) {
// blimp.mode_guided.set_velocity(vel_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// } else if (!pos_ignore && vel_ignore) {
// blimp.mode_guided.set_destination(pos_vector, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// }
// break;
// }
// case MAVLINK_MSG_ID_SET_POSITION_TARGET_GLOBAL_INT: // MAV ID: 86
// {
// // decode packet
// mavlink_set_position_target_global_int_t packet;
// mavlink_msg_set_position_target_global_int_decode(&msg, &packet);
// // exit if vehicle is not in Guided mode or Auto-Guided mode
// if (!blimp.flightmode->in_guided_mode()) {
// break;
// }
// bool pos_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_POS_IGNORE;
// bool vel_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_VEL_IGNORE;
// bool acc_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_ACC_IGNORE;
// bool yaw_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_IGNORE;
// bool yaw_rate_ignore = packet.type_mask & MAVLINK_SET_POS_TYPE_MASK_YAW_RATE_IGNORE;
// // exit immediately if acceleration provided
// if (!acc_ignore) {
// break;
// }
// // extract location from message
// Location loc;
// if (!pos_ignore) {
// // sanity check location
// if (!check_latlng(packet.lat_int, packet.lon_int)) {
// break;
// }
// Location::AltFrame frame;
// if (!mavlink_coordinate_frame_to_location_alt_frame((MAV_FRAME)packet.coordinate_frame, frame)) {
// // unknown coordinate frame
// break;
// }
// loc = {packet.lat_int, packet.lon_int, int32_t(packet.alt*100), frame};
// }
// // prepare yaw
// float yaw_cd = 0.0f;
// bool yaw_relative = false;
// float yaw_rate_cds = 0.0f;
// if (!yaw_ignore) {
// yaw_cd = ToDeg(packet.yaw) * 100.0f;
// yaw_relative = packet.coordinate_frame == MAV_FRAME_BODY_NED || packet.coordinate_frame == MAV_FRAME_BODY_OFFSET_NED;
// }
// if (!yaw_rate_ignore) {
// yaw_rate_cds = ToDeg(packet.yaw_rate) * 100.0f;
// }
// // send targets to the appropriate guided mode controller
// if (!pos_ignore && !vel_ignore) {
// // convert Location to vector from ekf origin for posvel controller
// if (loc.get_alt_frame() == Location::AltFrame::ABOVE_TERRAIN) {
// // posvel controller does not support alt-above-terrain
// break;
// }
// Vector3f pos_neu_cm;
// if (!loc.get_vector_from_origin_NEU(pos_neu_cm)) {
// break;
// }
// blimp.mode_guided.set_destination_posvel(pos_neu_cm, Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// } else if (pos_ignore && !vel_ignore) {
// blimp.mode_guided.set_velocity(Vector3f(packet.vx * 100.0f, packet.vy * 100.0f, -packet.vz * 100.0f), !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// } else if (!pos_ignore && vel_ignore) {
// blimp.mode_guided.set_destination(loc, !yaw_ignore, yaw_cd, !yaw_rate_ignore, yaw_rate_cds, yaw_relative);
// }
// break;
// }
// #endif
case MAVLINK_MSG_ID_RADIO:
case MAVLINK_MSG_ID_RADIO_STATUS: { // MAV ID: 109
handle_radio_status(msg, blimp.should_log(MASK_LOG_PM));
break;
}
case MAVLINK_MSG_ID_TERRAIN_DATA:
case MAVLINK_MSG_ID_TERRAIN_CHECK:
break;
case MAVLINK_MSG_ID_SET_HOME_POSITION: {
mavlink_set_home_position_t packet;
mavlink_msg_set_home_position_decode(&msg, &packet);
if ((packet.latitude == 0) && (packet.longitude == 0) && (packet.altitude == 0)) {
if (!blimp.set_home_to_current_location(true)) {
// silently ignored
}
} else {
Location new_home_loc;
new_home_loc.lat = packet.latitude;
new_home_loc.lng = packet.longitude;
new_home_loc.alt = packet.altitude / 10;
if (!blimp.set_home(new_home_loc, true)) {
// silently ignored
}
}
break;
}
case MAVLINK_MSG_ID_ADSB_VEHICLE:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_CFG:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_OUT_DYNAMIC:
case MAVLINK_MSG_ID_UAVIONIX_ADSB_TRANSCEIVER_HEALTH_REPORT:
break;
default:
handle_common_message(msg);
break;
} // end switch
} // end handle mavlink
MAV_RESULT GCS_MAVLINK_Blimp::handle_flight_termination(const mavlink_command_long_t &packet)
{
MAV_RESULT result = MAV_RESULT_FAILED;
if (packet.param1 > 0.5f) {
blimp.arming.disarm(AP_Arming::Method::TERMINATION);
result = MAV_RESULT_ACCEPTED;
}
return result;
}
float GCS_MAVLINK_Blimp::vfr_hud_alt() const
{
if (blimp.g2.dev_options.get() & DevOptionVFR_HUDRelativeAlt) {
// compatibility option for older mavlink-aware devices that
// assume Blimp returns a relative altitude in VFR_HUD.alt
return blimp.current_loc.alt * 0.01f;
}
return GCS_MAVLINK::vfr_hud_alt();
}
uint64_t GCS_MAVLINK_Blimp::capabilities() const
{
return (MAV_PROTOCOL_CAPABILITY_MISSION_FLOAT |
MAV_PROTOCOL_CAPABILITY_MISSION_INT |
MAV_PROTOCOL_CAPABILITY_COMMAND_INT |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_LOCAL_NED |
MAV_PROTOCOL_CAPABILITY_SET_POSITION_TARGET_GLOBAL_INT |
MAV_PROTOCOL_CAPABILITY_FLIGHT_TERMINATION |
MAV_PROTOCOL_CAPABILITY_SET_ATTITUDE_TARGET |
GCS_MAVLINK::capabilities());
}
MAV_LANDED_STATE GCS_MAVLINK_Blimp::landed_state() const
{
if (blimp.ap.land_complete) {
return MAV_LANDED_STATE_ON_GROUND;
}
if (blimp.flightmode->is_landing()) {
return MAV_LANDED_STATE_LANDING;
}
// if (blimp.flightmode->is_taking_off()) {
// return MAV_LANDED_STATE_TAKEOFF;
// }
return MAV_LANDED_STATE_IN_AIR;
}
void GCS_MAVLINK_Blimp::send_wind() const
{
Vector3f airspeed_vec_bf;
if (!AP::ahrs().airspeed_vector_true(airspeed_vec_bf)) {
// if we don't have an airspeed estimate then we don't have a
// valid wind estimate on blimps
return;
}
const Vector3f wind = AP::ahrs().wind_estimate();
mavlink_msg_wind_send(
chan,
degrees(atan2f(-wind.y, -wind.x)),
wind.length(),
wind.z);
}