Ardupilot2/ArduCopter/motors_y6.pde

192 lines
5.8 KiB
Plaintext
Raw Normal View History

/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
#if FRAME_CONFIG == Y6_FRAME
#define YAW_DIRECTION 1
static void init_motors_out()
{
#if INSTANT_PWM == 0
APM_RC.SetFastOutputChannels( _BV(CH_1) | _BV(CH_2) | _BV(CH_3) | _BV(CH_4)
| _BV(CH_7) | _BV(CH_8) );
#endif
}
static void output_motors_armed()
{
int out_min = g.rc_3.radio_min;
int out_max = g.rc_3.radio_max;
// Throttle is 0 to 1000 only
2011-12-29 02:37:44 -04:00
g.rc_3.servo_out = constrain(g.rc_3.servo_out, 0, MAXIMUM_THROTTLE);
if(g.rc_3.servo_out > 0)
out_min = g.rc_3.radio_min + MINIMUM_THROTTLE;
g.rc_1.calc_pwm();
g.rc_2.calc_pwm();
g.rc_3.calc_pwm();
g.rc_4.calc_pwm();
// Multi-Wii Mix
//left
2011-11-07 02:42:59 -04:00
motor_out[CH_2] = (g.rc_3.radio_out * g.top_bottom_ratio) + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // LEFT TOP - CW
motor_out[CH_3] = g.rc_3.radio_out + g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_LEFT - CCW
//right
2011-11-07 02:42:59 -04:00
motor_out[CH_7] = (g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // RIGHT TOP - CW
motor_out[CH_1] = g.rc_3.radio_out - g.rc_1.pwm_out + (g.rc_2.pwm_out * 2 / 3); // BOTTOM_RIGHT - CCW
//back
2011-11-07 02:42:59 -04:00
motor_out[CH_8] = (g.rc_3.radio_out * g.top_bottom_ratio) - (g.rc_2.pwm_out * 4 / 3); // REAR TOP - CCW
motor_out[CH_4] = g.rc_3.radio_out - (g.rc_2.pwm_out * 4 / 3); // BOTTOM_REAR - CW
//left
motor_out[CH_2] -= YAW_DIRECTION * g.rc_4.pwm_out; // LEFT TOP - CW
motor_out[CH_3] += YAW_DIRECTION * g.rc_4.pwm_out; // LEFT BOTTOM - CCW
//right
motor_out[CH_7] -= YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT TOP - CW
motor_out[CH_1] += YAW_DIRECTION * g.rc_4.pwm_out; // RIGHT BOTTOM - CCW
//back
motor_out[CH_8] += YAW_DIRECTION * g.rc_4.pwm_out; // REAR TOP - CCW
motor_out[CH_4] -= YAW_DIRECTION * g.rc_4.pwm_out; // REAR BOTTOM - CW
/*
int roll_out = (float)g.rc_1.pwm_out * .866;
int pitch_out = g.rc_2.pwm_out / 2;
//left
motor_out[CH_2] = ((g.rc_3.radio_out * g.top_bottom_ratio) + roll_out + pitch_out); // CCW TOP
motor_out[CH_3] = g.rc_3.radio_out + roll_out + pitch_out; // CW
//right
motor_out[CH_7] = ((g.rc_3.radio_out * g.top_bottom_ratio) - roll_out + pitch_out); // CCW TOP
motor_out[CH_1] = g.rc_3.radio_out - roll_out + pitch_out; // CW
//back
motor_out[CH_8] = ((g.rc_3.radio_out * g.top_bottom_ratio) - g.rc_2.pwm_out); // CCW TOP
motor_out[CH_4] = g.rc_3.radio_out - g.rc_2.pwm_out; // CW
// Yaw
//top
motor_out[CH_2] += g.rc_4.pwm_out; // CCW
motor_out[CH_7] += g.rc_4.pwm_out; // CCW
motor_out[CH_8] += g.rc_4.pwm_out; // CCW
//bottom
motor_out[CH_3] -= g.rc_4.pwm_out; // CW
motor_out[CH_1] -= g.rc_4.pwm_out; // CW
motor_out[CH_4] -= g.rc_4.pwm_out; // CW
*/
// TODO: add stability patch
motor_out[CH_1] = min(motor_out[CH_1], out_max);
motor_out[CH_2] = min(motor_out[CH_2], out_max);
motor_out[CH_3] = min(motor_out[CH_3], out_max);
motor_out[CH_4] = min(motor_out[CH_4], out_max);
motor_out[CH_7] = min(motor_out[CH_7], out_max);
motor_out[CH_8] = min(motor_out[CH_8], out_max);
// limit output so motors don't stop
motor_out[CH_1] = max(motor_out[CH_1], out_min);
motor_out[CH_2] = max(motor_out[CH_2], out_min);
motor_out[CH_3] = max(motor_out[CH_3], out_min);
motor_out[CH_4] = max(motor_out[CH_4], out_min);
motor_out[CH_7] = max(motor_out[CH_7], out_min);
motor_out[CH_8] = max(motor_out[CH_8], out_min);
#if CUT_MOTORS == ENABLED
// if we are not sending a throttle output, we cut the motors
if(g.rc_3.servo_out == 0){
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
}
#endif
// this filter slows the acceleration of motors vs the deceleration
// Idea by Denny Rowland to help with his Yaw issue
for(int8_t m = 0; m <= 6; m++ ) {
int i = ch_of_mot(m);
if(motor_filtered[i] < motor_out[i]){
motor_filtered[i] = (motor_out[i] + motor_filtered[i]) / 2;
}else{
// don't filter
motor_filtered[i] = motor_out[i];
}
}
APM_RC.OutputCh(CH_1, motor_filtered[CH_1]);
APM_RC.OutputCh(CH_2, motor_filtered[CH_2]);
APM_RC.OutputCh(CH_3, motor_filtered[CH_3]);
APM_RC.OutputCh(CH_4, motor_filtered[CH_4]);
APM_RC.OutputCh(CH_7, motor_filtered[CH_7]);
APM_RC.OutputCh(CH_8, motor_filtered[CH_8]);
#if INSTANT_PWM == 1
// InstantPWM
APM_RC.Force_Out0_Out1();
APM_RC.Force_Out2_Out3();
APM_RC.Force_Out6_Out7();
#endif
}
static void output_motors_disarmed()
{
if(g.rc_3.control_in > 0){
// we have pushed up the throttle
// remove safety
motor_auto_armed = true;
}
// fill the motor_out[] array for HIL use
for (unsigned char i = 0; i < 8; i++) {
motor_out[i] = g.rc_3.radio_min;
}
// Send commands to motors
APM_RC.OutputCh(CH_1, g.rc_3.radio_min);
APM_RC.OutputCh(CH_2, g.rc_3.radio_min);
APM_RC.OutputCh(CH_3, g.rc_3.radio_min);
APM_RC.OutputCh(CH_4, g.rc_3.radio_min);
APM_RC.OutputCh(CH_7, g.rc_3.radio_min);
APM_RC.OutputCh(CH_8, g.rc_3.radio_min);
}
static void output_motor_test()
{
motor_out[CH_1] = g.rc_3.radio_min;
motor_out[CH_2] = g.rc_3.radio_min;
motor_out[CH_3] = g.rc_3.radio_min;
motor_out[CH_4] = g.rc_3.radio_min;
motor_out[CH_7] = g.rc_3.radio_min;
motor_out[CH_8] = g.rc_3.radio_min;
if(g.rc_1.control_in > 3000){ // right
motor_out[CH_1] += 100;
motor_out[CH_7] += 100;
}
if(g.rc_1.control_in < -3000){ // left
motor_out[CH_2] += 100;
motor_out[CH_3] += 100;
}
if(g.rc_2.control_in > 3000){ // back
motor_out[CH_8] += 100;
motor_out[CH_4] += 100;
}
APM_RC.OutputCh(CH_1, motor_out[CH_1]);
APM_RC.OutputCh(CH_2, motor_out[CH_2]);
APM_RC.OutputCh(CH_3, motor_out[CH_4]);
APM_RC.OutputCh(CH_4, motor_out[CH_4]);
APM_RC.OutputCh(CH_7, motor_out[CH_7]);
APM_RC.OutputCh(CH_8, motor_out[CH_8]);
}
#endif