2015-09-21 02:18:49 -03:00
/// -*- tab-width: 4; Mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*-
/*
24 state EKF based on https : //github.com/priseborough/InertialNav
Converted from Matlab to C + + by Paul Riseborough
This program is free software : you can redistribute it and / or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation , either version 3 of the License , or
( at your option ) any later version .
This program is distributed in the hope that it will be useful ,
but WITHOUT ANY WARRANTY ; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
GNU General Public License for more details .
You should have received a copy of the GNU General Public License
along with this program . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef AP_NavEKF2_core
# define AP_NavEKF2_core
# include <AP_Math/AP_Math.h>
# include "AP_NavEKF2.h"
// #define MATH_CHECK_INDEXES 1
# include <AP_Math/vectorN.h>
# if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
# include <systemlib/perf_counter.h>
# endif
class AP_AHRS ;
class NavEKF2_core
{
public :
// Constructor
NavEKF2_core ( NavEKF2 & frontend , const AP_AHRS * ahrs , AP_Baro & baro , const RangeFinder & rng ) ;
// Initialise the states from accelerometer and magnetometer data (if present)
// This method can only be used when the vehicle is static
bool InitialiseFilterBootstrap ( void ) ;
// Update Filter States - this should be called whenever new IMU data is available
void UpdateFilter ( void ) ;
// Check basic filter health metrics and return a consolidated health status
bool healthy ( void ) const ;
// Return the last calculated NED position relative to the reference point (m).
// If a calculated solution is not available, use the best available data and return false
// If false returned, do not use for flight control
bool getPosNED ( Vector3f & pos ) const ;
// return NED velocity in m/s
void getVelNED ( Vector3f & vel ) const ;
// This returns the specific forces in the NED frame
void getAccelNED ( Vector3f & accelNED ) const ;
// return body axis gyro bias estimates in rad/sec
void getGyroBias ( Vector3f & gyroBias ) const ;
// return body axis gyro scale factor estimates
void getGyroScale ( Vector3f & gyroScale ) const ;
// return tilt error convergence metric
void getTiltError ( float & ang ) const ;
// reset body axis gyro bias estimates
void resetGyroBias ( void ) ;
// Resets the baro so that it reads zero at the current height
// Resets the EKF height to zero
// Adjusts the EKf origin height so that the EKF height + origin height is the same as before
// Returns true if the height datum reset has been performed
// If using a range finder for height no reset is performed and it returns false
bool resetHeightDatum ( void ) ;
// Commands the EKF to not use GPS.
// This command must be sent prior to arming as it will only be actioned when the filter is in static mode
// This command is forgotten by the EKF each time it goes back into static mode (eg the vehicle disarms)
// Returns 0 if command rejected
// Returns 1 if attitude, vertical velocity and vertical position will be provided
// Returns 2 if attitude, 3D-velocity, vertical position and relative horizontal position will be provided
uint8_t setInhibitGPS ( void ) ;
// return the horizontal speed limit in m/s set by optical flow sensor limits
// return the scale factor to be applied to navigation velocity gains to compensate for increase in velocity noise with height when using optical flow
void getEkfControlLimits ( float & ekfGndSpdLimit , float & ekfNavVelGainScaler ) const ;
// return weighting of first IMU in blending function
void getIMU1Weighting ( float & ret ) const ;
// return the individual Z-accel bias estimates in m/s^2
void getAccelZBias ( float & zbias1 , float & zbias2 ) const ;
// return the NED wind speed estimates in m/s (positive is air moving in the direction of the axis)
void getWind ( Vector3f & wind ) const ;
// return earth magnetic field estimates in measurement units / 1000
void getMagNED ( Vector3f & magNED ) const ;
// return body magnetic field estimates in measurement units / 1000
void getMagXYZ ( Vector3f & magXYZ ) const ;
// Return estimated magnetometer offsets
// Return true if magnetometer offsets are valid
bool getMagOffsets ( Vector3f & magOffsets ) const ;
// Return the last calculated latitude, longitude and height in WGS-84
// If a calculated location isn't available, return a raw GPS measurement
// The status will return true if a calculation or raw measurement is available
// The getFilterStatus() function provides a more detailed description of data health and must be checked if data is to be used for flight control
bool getLLH ( struct Location & loc ) const ;
// return the latitude and longitude and height used to set the NED origin
// All NED positions calculated by the filter are relative to this location
// Returns false if the origin has not been set
bool getOriginLLH ( struct Location & loc ) const ;
// set the latitude and longitude and height used to set the NED origin
// All NED positions calcualted by the filter will be relative to this location
// The origin cannot be set if the filter is in a flight mode (eg vehicle armed)
// Returns false if the filter has rejected the attempt to set the origin
bool setOriginLLH ( struct Location & loc ) ;
// return estimated height above ground level
// return false if ground height is not being estimated.
bool getHAGL ( float & HAGL ) const ;
// return the Euler roll, pitch and yaw angle in radians
void getEulerAngles ( Vector3f & eulers ) const ;
// return the transformation matrix from XYZ (body) to NED axes
void getRotationBodyToNED ( Matrix3f & mat ) const ;
// return the quaternions defining the rotation from NED to XYZ (body) axes
void getQuaternion ( Quaternion & quat ) const ;
// return the innovations for the NED Pos, NED Vel, XYZ Mag and Vtas measurements
void getInnovations ( Vector3f & velInnov , Vector3f & posInnov , Vector3f & magInnov , float & tasInnov , float & yawInnov ) const ;
// return the innovation consistency test ratios for the velocity, position, magnetometer and true airspeed measurements
void getVariances ( float & velVar , float & posVar , float & hgtVar , Vector3f & magVar , float & tasVar , Vector2f & offset ) const ;
// should we use the compass? This is public so it can be used for
// reporting via ahrs.use_compass()
bool use_compass ( void ) const ;
// write the raw optical flow measurements
// rawFlowQuality is a measured of quality between 0 and 255, with 255 being the best quality
// rawFlowRates are the optical flow rates in rad/sec about the X and Y sensor axes.
// rawGyroRates are the sensor rotation rates in rad/sec measured by the sensors internal gyro
// The sign convention is that a RH physical rotation of the sensor about an axis produces both a positive flow and gyro rate
// msecFlowMeas is the scheduler time in msec when the optical flow data was received from the sensor.
void writeOptFlowMeas ( uint8_t & rawFlowQuality , Vector2f & rawFlowRates , Vector2f & rawGyroRates , uint32_t & msecFlowMeas ) ;
// return data for debugging optical flow fusion
void getFlowDebug ( float & varFlow , float & gndOffset , float & flowInnovX , float & flowInnovY , float & auxInnov , float & HAGL , float & rngInnov , float & range , float & gndOffsetErr ) const ;
// called by vehicle code to specify that a takeoff is happening
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTakeoffExpected ( bool val ) ;
// called by vehicle code to specify that a touchdown is expected to happen
// causes the EKF to compensate for expected barometer errors due to ground effect
void setTouchdownExpected ( bool val ) ;
/*
return the filter fault status as a bitmasked integer
0 = quaternions are NaN
1 = velocities are NaN
2 = badly conditioned X magnetometer fusion
3 = badly conditioned Y magnetometer fusion
5 = badly conditioned Z magnetometer fusion
6 = badly conditioned airspeed fusion
7 = badly conditioned synthetic sideslip fusion
7 = filter is not initialised
*/
void getFilterFaults ( uint8_t & faults ) const ;
/*
return filter timeout status as a bitmasked integer
0 = position measurement timeout
1 = velocity measurement timeout
2 = height measurement timeout
3 = magnetometer measurement timeout
5 = unassigned
6 = unassigned
7 = unassigned
7 = unassigned
*/
void getFilterTimeouts ( uint8_t & timeouts ) const ;
/*
return filter status flags
*/
void getFilterStatus ( nav_filter_status & status ) const ;
// send an EKF_STATUS_REPORT message to GCS
void send_status_report ( mavlink_channel_t chan ) ;
// provides the height limit to be observed by the control loops
// returns false if no height limiting is required
// this is needed to ensure the vehicle does not fly too high when using optical flow navigation
bool getHeightControlLimit ( float & height ) const ;
// return the amount of yaw angle change due to the last yaw angle reset in radians
// returns true if a reset yaw angle has been updated and not queried
// this function should not have more than one client
bool getLastYawResetAngle ( float & yawAng ) ;
2015-09-22 21:27:56 -03:00
private :
2015-09-21 02:18:49 -03:00
// Reference to the global EKF frontend for parameters
NavEKF2 & frontend ;
typedef float ftype ;
# if defined(MATH_CHECK_INDEXES) && (MATH_CHECK_INDEXES == 1)
typedef VectorN < ftype , 2 > Vector2 ;
typedef VectorN < ftype , 3 > Vector3 ;
typedef VectorN < ftype , 4 > Vector4 ;
typedef VectorN < ftype , 5 > Vector5 ;
typedef VectorN < ftype , 6 > Vector6 ;
typedef VectorN < ftype , 7 > Vector7 ;
typedef VectorN < ftype , 8 > Vector8 ;
typedef VectorN < ftype , 9 > Vector9 ;
typedef VectorN < ftype , 10 > Vector10 ;
typedef VectorN < ftype , 11 > Vector11 ;
typedef VectorN < ftype , 13 > Vector13 ;
typedef VectorN < ftype , 14 > Vector14 ;
typedef VectorN < ftype , 15 > Vector15 ;
typedef VectorN < ftype , 22 > Vector22 ;
typedef VectorN < ftype , 23 > Vector23 ;
typedef VectorN < ftype , 24 > Vector24 ;
typedef VectorN < ftype , 25 > Vector25 ;
typedef VectorN < ftype , 31 > Vector31 ;
2015-09-22 21:27:56 -03:00
typedef VectorN < ftype , 28 > Vector28 ;
2015-09-21 02:18:49 -03:00
typedef VectorN < VectorN < ftype , 3 > , 3 > Matrix3 ;
typedef VectorN < VectorN < ftype , 24 > , 24 > Matrix24 ;
typedef VectorN < VectorN < ftype , 34 > , 50 > Matrix34_50 ;
typedef VectorN < uint32_t , 50 > Vector_u32_50 ;
# else
typedef ftype Vector2 [ 2 ] ;
typedef ftype Vector3 [ 3 ] ;
typedef ftype Vector4 [ 4 ] ;
typedef ftype Vector5 [ 5 ] ;
typedef ftype Vector6 [ 6 ] ;
typedef ftype Vector7 [ 7 ] ;
typedef ftype Vector8 [ 8 ] ;
typedef ftype Vector9 [ 9 ] ;
typedef ftype Vector10 [ 10 ] ;
typedef ftype Vector11 [ 11 ] ;
typedef ftype Vector13 [ 13 ] ;
typedef ftype Vector14 [ 14 ] ;
typedef ftype Vector15 [ 15 ] ;
typedef ftype Vector22 [ 22 ] ;
typedef ftype Vector23 [ 23 ] ;
typedef ftype Vector24 [ 24 ] ;
typedef ftype Vector25 [ 25 ] ;
typedef ftype Vector28 [ 28 ] ;
typedef ftype Matrix3 [ 3 ] [ 3 ] ;
typedef ftype Matrix24 [ 24 ] [ 24 ] ;
typedef ftype Matrix34_50 [ 34 ] [ 50 ] ;
typedef uint32_t Vector_u32_50 [ 50 ] ;
# endif
const AP_AHRS * _ahrs ;
AP_Baro & _baro ;
const RangeFinder & _rng ;
// the states are available in two forms, either as a Vector31, or
// broken down as individual elements. Both are equivalent (same
// memory)
Vector28 statesArray ;
struct state_elements {
Vector3f angErr ; // 0..2
Vector3f velocity ; // 3..5
Vector3f position ; // 6..8
Vector3f gyro_bias ; // 9..11
Vector3f gyro_scale ; // 12..14
float accel_zbias ; // 15
Vector3f earth_magfield ; // 16..18
Vector3f body_magfield ; // 19..21
Vector2f wind_vel ; // 22..23
Quaternion quat ; // 24..27
} & stateStruct ;
struct output_elements {
Quaternion quat ; // 0..3
Vector3f velocity ; // 4..6
Vector3f position ; // 7..9
} ;
struct imu_elements {
Vector3f delAng ; // 0..2
Vector3f delVel ; // 3..5
float delAngDT ; // 6
float delVelDT ; // 7
uint32_t frame ; // 8
uint32_t time_ms ; // 9
} ;
struct gps_elements {
Vector2f pos ; // 0..1
float hgt ; // 2
Vector3f vel ; // 3..5
uint32_t time_ms ; // 6
} ;
struct mag_elements {
Vector3f mag ; // 0..2
uint32_t time_ms ; // 3
} ;
struct baro_elements {
float hgt ; // 0
uint32_t time_ms ; // 1
} ;
struct tas_elements {
float tas ; // 0
uint32_t time_ms ; // 1
} ;
struct of_elements {
Vector2f flowRadXY ; // 0..1
Vector2f flowRadXYcomp ; // 2..3
uint32_t time_ms ; // 4
} ;
// update the quaternion, velocity and position states using IMU measurements
void UpdateStrapdownEquationsNED ( ) ;
// calculate the predicted state covariance matrix
void CovariancePrediction ( ) ;
// force symmetry on the state covariance matrix
void ForceSymmetry ( ) ;
// copy covariances across from covariance prediction calculation and fix numerical errors
void CopyCovariances ( ) ;
// constrain variances (diagonal terms) in the state covariance matrix
void ConstrainVariances ( ) ;
// constrain states
void ConstrainStates ( ) ;
// fuse selected position, velocity and height measurements
void FuseVelPosNED ( ) ;
// fuse magnetometer measurements
void FuseMagnetometer ( ) ;
// fuse true airspeed measurements
void FuseAirspeed ( ) ;
// fuse sythetic sideslip measurement of zero
void FuseSideslip ( ) ;
// zero specified range of rows in the state covariance matrix
void zeroRows ( Matrix24 & covMat , uint8_t first , uint8_t last ) ;
// zero specified range of columns in the state covariance matrix
void zeroCols ( Matrix24 & covMat , uint8_t first , uint8_t last ) ;
// store imu data in the FIFO
void StoreIMU ( void ) ;
// Reset the stored IMU history to current data
void StoreIMU_reset ( void ) ;
// recall IMU data from the FIFO
void RecallIMU ( ) ;
// store output data in the FIFO
void StoreOutput ( void ) ;
// Reset the stored output history to current data
void StoreOutputReset ( void ) ;
// Reset the stored output quaternion history to current EKF state
void StoreQuatReset ( void ) ;
// recall output data from the FIFO
void RecallOutput ( ) ;
// store altimeter data
void StoreBaro ( ) ;
// recall altimeter data at the fusion time horizon
// return true if data found
bool RecallBaro ( ) ;
// store magnetometer data
void StoreMag ( ) ;
// recall magetometer data at the fusion time horizon
// return true if data found
bool RecallMag ( ) ;
// store GPS data
void StoreGPS ( ) ;
// recall GPS data at the fusion time horizon
// return true if data found
bool RecallGPS ( ) ;
// store true airspeed data
void StoreTAS ( ) ;
// recall true airspeed data at the fusion time horizon
// return true if data found
bool RecallTAS ( ) ;
// store optical flow data
void StoreOF ( ) ;
// recall optical flow data at the fusion time horizon
// return true if data found
bool RecallOF ( ) ;
// calculate nav to body quaternions from body to nav rotation matrix
void quat2Tbn ( Matrix3f & Tbn , const Quaternion & quat ) const ;
// calculate the NED earth spin vector in rad/sec
void calcEarthRateNED ( Vector3f & omega , int32_t latitude ) const ;
// calculate whether the flight vehicle is on the ground or flying from height, airspeed and GPS speed
void SetFlightAndFusionModes ( ) ;
// initialise the covariance matrix
void CovarianceInit ( ) ;
// helper functions for readIMUData
bool readDeltaVelocity ( uint8_t ins_index , Vector3f & dVel , float & dVel_dt ) ;
bool readDeltaAngle ( uint8_t ins_index , Vector3f & dAng ) ;
// update IMU delta angle and delta velocity measurements
void readIMUData ( ) ;
// check for new valid GPS data and update stored measurement if available
void readGpsData ( ) ;
// check for new altitude measurement data and update stored measurement if available
void readHgtData ( ) ;
// check for new magnetometer data and update store measurements if available
void readMagData ( ) ;
// check for new airspeed data and update stored measurements if available
void readAirSpdData ( ) ;
// determine when to perform fusion of GPS position and velocity measurements
void SelectVelPosFusion ( ) ;
// determine when to perform fusion of magnetometer measurements
void SelectMagFusion ( ) ;
// determine when to perform fusion of true airspeed measurements
void SelectTasFusion ( ) ;
// determine when to perform fusion of synthetic sideslp measurements
void SelectBetaFusion ( ) ;
// force alignment of the yaw angle using GPS velocity data
void alignYawGPS ( ) ;
// initialise the earth magnetic field states using declination and current attitude and magnetometer meaasurements
// and return attitude quaternion
Quaternion calcQuatAndFieldStates ( float roll , float pitch ) ;
// zero stored variables
void InitialiseVariables ( ) ;
// reset the horizontal position states uing the last GPS measurement
void ResetPosition ( void ) ;
// reset velocity states using the last GPS measurement
void ResetVelocity ( void ) ;
// reset the vertical position state using the last height measurement
void ResetHeight ( void ) ;
// return true if we should use the airspeed sensor
bool useAirspeed ( void ) const ;
// return true if the vehicle code has requested the filter to be ready for flight
bool readyToUseGPS ( void ) const ;
// decay GPS horizontal position offset to close to zero at a rate of 1 m/s
// this allows large GPS position jumps to be accomodated gradually
void decayGpsOffset ( void ) ;
// Check for filter divergence
void checkDivergence ( void ) ;
// Calculate weighting that is applied to IMU1 accel data to blend data from IMU's 1 and 2
void calcIMU_Weighting ( float K1 , float K2 ) ;
// return true if optical flow data is available
bool optFlowDataPresent ( void ) const ;
// return true if we should use the range finder sensor
bool useRngFinder ( void ) const ;
// determine when to perform fusion of optical flow measurements
void SelectFlowFusion ( ) ;
// Estimate terrain offset using a single state EKF
void EstimateTerrainOffset ( ) ;
// fuse optical flow measurements into the main filter
void FuseOptFlow ( ) ;
// Check arm status and perform required checks and mode changes
void performArmingChecks ( ) ;
// Set the NED origin to be used until the next filter reset
void setOrigin ( ) ;
// determine if a takeoff is expected so that we can compensate for expected barometer errors due to ground effect
bool getTakeoffExpected ( ) ;
// determine if a touchdown is expected so that we can compensate for expected barometer errors due to ground effect
bool getTouchdownExpected ( ) ;
// Assess GPS data quality and return true if good enough to align the EKF
bool calcGpsGoodToAlign ( void ) ;
// Read the range finder and take new measurements if available
// Apply a median filter to range finder data
void readRangeFinder ( ) ;
// check if the vehicle has taken off during optical flow navigation by looking at inertial and range finder data
void detectOptFlowTakeoff ( void ) ;
// align the NE earth magnetic field states with the published declination
void alignMagStateDeclination ( ) ;
// Fuse compass measurements using a simple declination observation (doesn't require magnetic field states)
void fuseCompass ( ) ;
// Calculate compass heading innovation
float calcMagHeadingInnov ( ) ;
// Propagate PVA solution forward from the fusion time horizon to the current time horizon
// using buffered IMU data
void calcOutputStates ( ) ;
// Propagate PVA solution forward from the fusion time horizon to the current time horizon
// using a simple observer
void calcOutputStatesFast ( ) ;
// measurement buffer sizes
static const uint32_t IMU_BUFFER_LENGTH = 100 ; // number of IMU samples stored in the buffer. Samples*delta_time must be > max sensor delay
static const uint32_t OBS_BUFFER_LENGTH = 5 ; // number of non-IMU sensor samples stored in the buffer.
// Variables
bool statesInitialised ; // boolean true when filter states have been initialised
bool velHealth ; // boolean true if velocity measurements have passed innovation consistency check
bool posHealth ; // boolean true if position measurements have passed innovation consistency check
bool hgtHealth ; // boolean true if height measurements have passed innovation consistency check
bool magHealth ; // boolean true if magnetometer has passed innovation consistency check
bool tasHealth ; // boolean true if true airspeed has passed innovation consistency check
bool velTimeout ; // boolean true if velocity measurements have failed innovation consistency check and timed out
bool posTimeout ; // boolean true if position measurements have failed innovation consistency check and timed out
bool hgtTimeout ; // boolean true if height measurements have failed innovation consistency check and timed out
bool magTimeout ; // boolean true if magnetometer measurements have failed for too long and have timed out
bool tasTimeout ; // boolean true if true airspeed measurements have failed for too long and have timed out
bool badMag ; // boolean true if the magnetometer is declared to be producing bad data
bool badIMUdata ; // boolean true if the bad IMU data is detected
float gpsNoiseScaler ; // Used to scale the GPS measurement noise and consistency gates to compensate for operation with small satellite counts
Vector28 Kfusion ; // Kalman gain vector
Matrix24 KH ; // intermediate result used for covariance updates
Matrix24 KHP ; // intermediate result used for covariance updates
Matrix24 P ; // covariance matrix
imu_elements storedIMU [ IMU_BUFFER_LENGTH ] ; // IMU data buffer
gps_elements storedGPS [ OBS_BUFFER_LENGTH ] ; // GPS data buffer
mag_elements storedMag [ OBS_BUFFER_LENGTH ] ; // Magnetometer data buffer
baro_elements storedBaro [ OBS_BUFFER_LENGTH ] ; // Baro data buffer
tas_elements storedTAS [ OBS_BUFFER_LENGTH ] ; // TAS data buffer
output_elements storedOutput [ IMU_BUFFER_LENGTH ] ; // output state buffer
Vector3f correctedDelAng ; // delta angles about the xyz body axes corrected for errors (rad)
Quaternion correctedDelAngQuat ; // quaternion representation of correctedDelAng
Vector3f correctedDelVel ; // delta velocities along the XYZ body axes for weighted average of IMU1 and IMU2 corrected for errors (m/s)
Vector3f summedDelAng ; // corrected & summed delta angles about the xyz body axes (rad)
Vector3f summedDelVel ; // corrected & summed delta velocities along the XYZ body axes (m/s)
Vector3f lastGyroBias ; // previous gyro bias vector used by filter divergence check
Matrix3f prevTnb ; // previous nav to body transformation used for INS earth rotation compensation
ftype accNavMag ; // magnitude of navigation accel - used to adjust GPS obs variance (m/s^2)
ftype accNavMagHoriz ; // magnitude of navigation accel in horizontal plane (m/s^2)
Vector3f earthRateNED ; // earths angular rate vector in NED (rad/s)
ftype dtIMUavg ; // expected time between IMU measurements (sec)
ftype dt ; // time lapsed since the last covariance prediction (sec)
ftype hgtRate ; // state for rate of change of height filter
bool onGround ; // boolean true when the flight vehicle is on the ground (not flying)
bool prevOnGround ; // value of onGround from previous update
bool manoeuvring ; // boolean true when the flight vehicle is performing horizontal changes in velocity
uint32_t airborneDetectTime_ms ; // last time flight movement was detected
Vector6 innovVelPos ; // innovation output for a group of measurements
Vector6 varInnovVelPos ; // innovation variance output for a group of measurements
bool fuseVelData ; // this boolean causes the velNED measurements to be fused
bool fusePosData ; // this boolean causes the posNE measurements to be fused
bool fuseHgtData ; // this boolean causes the hgtMea measurements to be fused
Vector3f innovMag ; // innovation output from fusion of X,Y,Z compass measurements
Vector3f varInnovMag ; // innovation variance output from fusion of X,Y,Z compass measurements
ftype innovVtas ; // innovation output from fusion of airspeed measurements
ftype varInnovVtas ; // innovation variance output from fusion of airspeed measurements
bool fuseVtasData ; // boolean true when airspeed data is to be fused
float VtasMeas ; // true airspeed measurement (m/s)
bool covPredStep ; // boolean set to true when a covariance prediction step has been performed
bool magFusePerformed ; // boolean set to true when magnetometer fusion has been perfomred in that time step
bool magFuseRequired ; // boolean set to true when magnetometer fusion will be perfomred in the next time step
bool posVelFuseStep ; // boolean set to true when position and velocity fusion is being performed
bool tasFuseStep ; // boolean set to true when airspeed fusion is being performed
uint32_t TASmsecPrev ; // time stamp of last TAS fusion step
uint32_t BETAmsecPrev ; // time stamp of last synthetic sideslip fusion step
uint32_t MAGmsecPrev ; // time stamp of last compass fusion step
uint32_t HGTmsecPrev ; // time stamp of last height measurement fusion step
bool constPosMode ; // true when fusing a constant position to maintain attitude reference for planned operation without GPS or optical flow data
uint32_t lastMagUpdate ; // last time compass was updated
Vector3f velDotNED ; // rate of change of velocity in NED frame
Vector3f velDotNEDfilt ; // low pass filtered velDotNED
uint32_t imuSampleTime_ms ; // time that the last IMU value was taken
bool newDataMag ; // true when new magnetometer data has arrived
bool newDataTas ; // true when new airspeed data has arrived
bool tasDataWaiting ; // true when new airspeed data is waiting to be fused
uint32_t lastHgtReceived_ms ; // time last time we received height data
uint16_t hgtRetryTime ; // time allowed without use of height measurements before a height timeout is declared
uint32_t lastVelPassTime ; // time stamp when GPS velocity measurement last passed innovation consistency check (msec)
uint32_t lastPosPassTime ; // time stamp when GPS position measurement last passed innovation consistency check (msec)
uint32_t lastPosFailTime ; // time stamp when GPS position measurement last failed innovation consistency check (msec)
uint32_t lastHgtPassTime ; // time stamp when height measurement last passed innovation consistency check (msec)
uint32_t lastTasPassTime ; // time stamp when airspeed measurement last passed innovation consistency check (msec)
uint32_t lastStateStoreTime_ms ; // time of last state vector storage
uint32_t lastTimeGpsReceived_ms ; // last time we recieved GPS data
uint32_t timeAtLastAuxEKF_ms ; // last time the auxilliary filter was run to fuse range or optical flow measurements
uint32_t secondLastGpsTime_ms ; // time of second last GPS fix used to determine how long since last update
uint32_t lastHealthyMagTime_ms ; // time the magnetometer was last declared healthy
uint32_t ekfStartTime_ms ; // time the EKF was started (msec)
Vector3f lastAngRate ; // angular rate from previous IMU sample used for trapezoidal integrator
Vector3f lastAccel1 ; // acceleration from previous IMU1 sample used for trapezoidal integrator
Vector3f lastAccel2 ; // acceleration from previous IMU2 sample used for trapezoidal integrator
Matrix24 nextP ; // Predicted covariance matrix before addition of process noise to diagonals
Vector24 processNoise ; // process noise added to diagonals of predicted covariance matrix
Vector25 SF ; // intermediate variables used to calculate predicted covariance matrix
Vector5 SG ; // intermediate variables used to calculate predicted covariance matrix
Vector8 SQ ; // intermediate variables used to calculate predicted covariance matrix
Vector23 SPP ; // intermediate variables used to calculate predicted covariance matrix
float IMU1_weighting ; // Weighting applied to use of IMU1. Varies between 0 and 1.
bool yawAligned ; // true when the yaw angle has been aligned
Vector2f gpsPosGlitchOffsetNE ; // offset applied to GPS data in the NE direction to compensate for rapid changes in GPS solution
Vector2f lastKnownPositionNE ; // last known position
uint32_t lastDecayTime_ms ; // time of last decay of GPS position offset
float velTestRatio ; // sum of squares of GPS velocity innovation divided by fail threshold
float posTestRatio ; // sum of squares of GPS position innovation divided by fail threshold
float hgtTestRatio ; // sum of squares of baro height innovation divided by fail threshold
Vector3f magTestRatio ; // sum of squares of magnetometer innovations divided by fail threshold
float tasTestRatio ; // sum of squares of true airspeed innovation divided by fail threshold
bool inhibitWindStates ; // true when wind states and covariances are to remain constant
bool inhibitMagStates ; // true when magnetic field states and covariances are to remain constant
bool firstArmComplete ; // true when first transition out of static mode has been performed after start up
bool firstMagYawInit ; // true when the first post takeoff initialisation of earth field and yaw angle has been performed
bool secondMagYawInit ; // true when the second post takeoff initialisation of earth field and yaw angle has been performed
bool flowTimeout ; // true when optical flow measurements have time out
Vector2f gpsVelGlitchOffset ; // Offset applied to the GPS velocity when the gltch radius is being decayed back to zero
bool gpsNotAvailable ; // bool true when valid GPS data is not available
bool filterArmed ; // true when the vehicle is disarmed
bool prevFilterArmed ; // vehicleArmed from previous frame
struct Location EKF_origin ; // LLH origin of the NED axis system - do not change unless filter is reset
bool validOrigin ; // true when the EKF origin is valid
float gpsSpdAccuracy ; // estimated speed accuracy in m/s returned by the UBlox GPS receiver
uint32_t lastGpsVelFail_ms ; // time of last GPS vertical velocity consistency check fail
Vector3f lastMagOffsets ; // magnetometer offsets returned by compass object from previous update
bool gpsAidingBad ; // true when GPS position measurements have been consistently rejected by the filter
uint32_t lastGpsAidBadTime_ms ; // time in msec gps aiding was last detected to be bad
float posDownAtArming ; // flight vehicle vertical position at arming used as a reference point
bool highYawRate ; // true when the vehicle is doing rapid yaw rotation where gyro scel factor errors could cause loss of heading reference
float yawRateFilt ; // filtered yaw rate used to determine when the vehicle is doing rapid yaw rotation where gyro scel factor errors could cause loss of heading reference
bool useGpsVertVel ; // true if GPS vertical velocity should be used
float yawResetAngle ; // Change in yaw angle due to last in-flight yaw reset in radians. A positive value means the yaw angle has increased.
bool yawResetAngleWaiting ; // true when the yaw reset angle has been updated and has not been retrieved via the getLastYawResetAngle() function
Vector3f tiltErrVec ; // Vector of most recent attitude error correction from Vel,Pos fusion
float tiltErrFilt ; // Filtered tilt error metric
bool tiltAlignComplete ; // true when tilt alignment is complete
bool yawAlignComplete ; // true when yaw alignment is complete
uint8_t stateIndexLim ; // Max state index used during matrix and array operations
imu_elements imuDataDelayed ; // IMU data at the fusion time horizon
imu_elements imuDataNew ; // IMU data at the current time horizon
uint8_t fifoIndexNow ; // Global index for inertial and output solution at current time horizon
uint8_t fifoIndexDelayed ; // Global index for inertial and output solution at delayed/fusion time horizon
uint32_t hgtMeasTime_ms ; // Effective measurement time of last received height measurement
uint32_t magMeasTime_ms ; // Effective measurement time of last received magnetometer measurement
baro_elements baroDataNew ; // Baro data at the current time horizon
baro_elements baroDataDelayed ; // Baro data at the fusion time horizon
uint8_t baroStoreIndex ; // Baro data storage index
tas_elements tasDataNew ; // TAS data at the current time horizon
tas_elements tasDataDelayed ; // TAS data at the fusion time horizon
uint8_t tasStoreIndex ; // TAS data storage index
mag_elements magDataNew ; // Magnetometer data at the current time horizon
mag_elements magDataDelayed ; // Magnetometer data at the fusion time horizon
uint8_t magStoreIndex ; // Magnetometer data storage index
gps_elements gpsDataNew ; // GPS data at the current time horizon
gps_elements gpsDataDelayed ; // GPS data at the fusion time horizon
uint8_t gpsStoreIndex ; // GPS data storage index
output_elements outputDataNew ; // output state data at the current time step
output_elements outputDataDelayed ; // output state data at the current time step
Vector3f delAngCorrection ; // correction applied to delta angles used by output observer to track the EKF
Vector3f delVelCorrection ; // correction applied to earth frame delta velocities used by output observer to track the EKF
Vector3f velCorrection ; // correction applied to velocities used by the output observer to track the EKF
float innovYaw ; // compass yaw angle innovation (rad)
uint32_t timeTasReceived_ms ; // tie last TAS data was received (msec)
bool gpsQualGood ; // true when the GPS quality can be used to initialise the navigation system
// variables added for optical flow fusion
of_elements storedOF [ OBS_BUFFER_LENGTH ] ; // OF data buffer
of_elements ofDataNew ; // OF data at the current time horizon
of_elements ofDataDelayed ; // OF data at the fusion time horizon
uint8_t ofStoreIndex ; // OF data storage index
bool newDataFlow ; // true when new optical flow data has arrived
bool flowFusePerformed ; // true when optical flow fusion has been performed in that time step
bool flowDataValid ; // true while optical flow data is still fresh
bool fuseOptFlowData ; // this boolean causes the last optical flow measurement to be fused
float auxFlowObsInnov ; // optical flow rate innovation from 1-state terrain offset estimator
float auxFlowObsInnovVar ; // innovation variance for optical flow observations from 1-state terrain offset estimator
Vector2 flowRadXYcomp ; // motion compensated optical flow angular rates(rad/sec)
Vector2 flowRadXY ; // raw (non motion compensated) optical flow angular rates (rad/sec)
uint32_t flowValidMeaTime_ms ; // time stamp from latest valid flow measurement (msec)
uint32_t rngValidMeaTime_ms ; // time stamp from latest valid range measurement (msec)
uint32_t flowMeaTime_ms ; // time stamp from latest flow measurement (msec)
uint8_t flowQuality ; // unsigned integer representing quality of optical flow data. 255 is maximum quality.
uint32_t gndHgtValidTime_ms ; // time stamp from last terrain offset state update (msec)
Vector3f omegaAcrossFlowTime ; // body angular rates averaged across the optical flow sample period
Matrix3f Tnb_flow ; // transformation matrix from nav to body axes at the middle of the optical flow sample period
Matrix3f Tbn_flow ; // transformation matrix from body to nav axes at the middle of the optical flow sample period
Vector2 varInnovOptFlow ; // optical flow innovations variances (rad/sec)^2
Vector2 innovOptFlow ; // optical flow LOS innovations (rad/sec)
float Popt ; // Optical flow terrain height state covariance (m^2)
float terrainState ; // terrain position state (m)
float prevPosN ; // north position at last measurement
float prevPosE ; // east position at last measurement
bool fuseRngData ; // true when fusion of range data is demanded
float varInnovRng ; // range finder observation innovation variance (m^2)
float innovRng ; // range finder observation innovation (m)
float rngMea ; // range finder measurement (m)
bool inhibitGndState ; // true when the terrain position state is to remain constant
uint32_t prevFlowFuseTime_ms ; // time both flow measurement components passed their innovation consistency checks
Vector2 flowTestRatio ; // square of optical flow innovations divided by fail threshold used by main filter where >1.0 is a fail
float auxFlowTestRatio ; // sum of squares of optical flow innovation divided by fail threshold used by 1-state terrain offset estimator
float R_LOS ; // variance of optical flow rate measurements (rad/sec)^2
float auxRngTestRatio ; // square of range finder innovations divided by fail threshold used by main filter where >1.0 is a fail
Vector2f flowGyroBias ; // bias error of optical flow sensor gyro output
bool newDataRng ; // true when new valid range finder data has arrived.
bool constVelMode ; // true when fusing a constant velocity to maintain attitude reference when either optical flow or GPS measurements are lost after arming
bool lastConstVelMode ; // last value of holdVelocity
Vector2f heldVelNE ; // velocity held when no aiding is available
enum AidingMode { AID_ABSOLUTE = 0 , // GPS aiding is being used (optical flow may also be used) so position estimates are absolute.
2015-09-23 04:29:28 -03:00
AID_NONE = 1 , // no aiding is being used so only attitude and height estimates are available. Either constVelMode or constPosMode must be used to constrain tilt drift.
AID_RELATIVE = 2 // only optical flow aiding is being used so position estimates will be relative
} ;
2015-09-21 02:18:49 -03:00
AidingMode PV_AidingMode ; // Defines the preferred mode for aiding of velocity and position estimates from the INS
bool gndOffsetValid ; // true when the ground offset state can still be considered valid
bool flowXfailed ; // true when the X optical flow measurement has failed the innovation consistency check
Vector3f delAngBodyOF ; // bias corrected delta angle of the vehicle IMU measured summed across the time since the last OF measurement
float delTimeOF ; // time that delAngBodyOF is summed across
// Range finder
float baroHgtOffset ; // offset applied when baro height used as a backup height reference if range-finder fails
float rngOnGnd ; // Expected range finder reading in metres when vehicle is on ground
float storedRngMeas [ 3 ] ; // Ringbuffer of stored range measurements
uint32_t storedRngMeasTime_ms [ 3 ] ; // Ringbuffer of stored range measurement times
uint32_t lastRngMeasTime_ms ; // Timestamp of last range measurement
uint8_t rngMeasIndex ; // Current range measurement ringbuffer index
// Movement detector
bool takeOffDetected ; // true when takeoff for optical flow navigation has been detected
float rangeAtArming ; // range finder measurement when armed
uint32_t timeAtArming_ms ; // time in msec that the vehicle armed
// IMU processing
float dtDelVel ;
float dtDelVel2 ;
// baro ground effect
bool expectGndEffectTakeoff ; // external state from ArduCopter - takeoff expected
uint32_t takeoffExpectedSet_ms ; // system time at which expectGndEffectTakeoff was set
bool expectGndEffectTouchdown ; // external state from ArduCopter - touchdown expected
uint32_t touchdownExpectedSet_ms ; // system time at which expectGndEffectTouchdown was set
float meaHgtAtTakeOff ; // height measured at commencement of takeoff
struct {
bool bad_xmag : 1 ;
bool bad_ymag : 1 ;
bool bad_zmag : 1 ;
bool bad_airspeed : 1 ;
bool bad_sideslip : 1 ;
} faultStatus ;
// states held by magnetomter fusion across time steps
// magnetometer X,Y,Z measurements are fused across three time steps
// to level computational load as this is an expensive operation
struct {
2015-09-23 04:29:28 -03:00
ftype q0 ;
2015-09-21 02:18:49 -03:00
ftype q1 ;
ftype q2 ;
ftype q3 ;
ftype magN ;
ftype magE ;
ftype magD ;
ftype magXbias ;
ftype magYbias ;
ftype magZbias ;
uint8_t obsIndex ;
Matrix3f DCM ;
Vector3f MagPred ;
ftype R_MAG ;
Vector9 SH_MAG ;
2015-09-23 04:29:28 -03:00
} mag_state ;
2015-09-21 02:18:49 -03:00
# if CONFIG_HAL_BOARD == HAL_BOARD_PX4 || CONFIG_HAL_BOARD == HAL_BOARD_VRBRAIN
// performance counters
perf_counter_t _perf_UpdateFilter ;
perf_counter_t _perf_CovariancePrediction ;
perf_counter_t _perf_FuseVelPosNED ;
perf_counter_t _perf_FuseMagnetometer ;
perf_counter_t _perf_FuseAirspeed ;
perf_counter_t _perf_FuseSideslip ;
perf_counter_t _perf_OpticalFlowEKF ;
perf_counter_t _perf_FuseOptFlow ;
# endif
2015-09-23 04:29:28 -03:00
2015-09-21 02:18:49 -03:00
// should we assume zero sideslip?
bool assume_zero_sideslip ( void ) const ;
// vehicle specific initial gyro bias uncertainty
float InitialGyroBiasUncertainty ( void ) const ;
} ;
# if CONFIG_HAL_BOARD != HAL_BOARD_PX4 && CONFIG_HAL_BOARD != HAL_BOARD_VRBRAIN
# define perf_begin(x)
# define perf_end(x)
# endif
# endif // AP_NavEKF2_core