Ardupilot2/libraries/AP_DCM/AP_DCM.h

160 lines
4.2 KiB
C
Raw Normal View History

#ifndef AP_DCM_h
#define AP_DCM_h
// temporarily include all other classes here
// since this naming is a bit off from the
// convention and the AP_DCM should be the top
// header file
#include "AP_DCM_HIL.h"
#include "../FastSerial/FastSerial.h"
#include "../AP_Math/AP_Math.h"
#include <inttypes.h>
#include "../AP_Compass/AP_Compass.h"
#include "../AP_ADC/AP_ADC.h"
#include "../AP_GPS/AP_GPS.h"
#include "../AP_IMU/AP_IMU.h"
#if defined(ARDUINO) && ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
class AP_DCM
{
public:
// Constructors
AP_DCM(IMU *imu, GPS *&gps, Compass *withCompass = NULL) :
_clamp(3),
_kp_roll_pitch(0.05967),
_ki_roll_pitch(0.00001278),
_kp_yaw(0.8), // .8
_ki_yaw(0.00004), // 0.00004
_compass(withCompass),
_gps(gps),
_imu(imu),
_dcm_matrix(1, 0, 0,
0, 1, 0,
0, 0, 1),
_health(1.),
_toggle(0)
{}
// Accessors
Vector3f get_gyro(void) {return _omega_integ_corr; } // We return the raw gyro vector corrected for bias
Matrix3f get_dcm_matrix(void) {return _dcm_matrix; }
Matrix3f get_dcm_transposed(void) {Matrix3f temp = _dcm_matrix; return temp.transpose();}
Vector3f get_integrator(void) {return _omega_I; } // We return the current drift correction integrator values
float get_health(void) {return _health;}
void set_centripetal(bool b) {_centripetal = b;}
bool get_centripetal(void) {return _centripetal;}
void set_compass(Compass *compass);
// Methods
void update_DCM(void);
void update_DCM_fast(void);
void matrix_reset(bool recover_eulers = false);
long roll_sensor; // Degrees * 100
long pitch_sensor; // Degrees * 100
long yaw_sensor; // Degrees * 100
float roll; // Radians
float pitch; // Radians
float yaw; // Radians
uint8_t gyro_sat_count;
uint8_t renorm_range_count;
uint8_t renorm_blowup_count;
float kp_roll_pitch() { return _kp_roll_pitch; }
void kp_roll_pitch(float v) { _kp_roll_pitch = v; }
float ki_roll_pitch() { return _ki_roll_pitch; }
void ki_roll_pitch(float v) { _ki_roll_pitch = v; }
float kp_yaw() { return _kp_yaw; }
void kp_yaw(float v) { _kp_yaw = v; }
float ki_yaw() { return _ki_yaw; }
void ki_yaw(float v) { _ki_yaw = v; }
static const float kDCM_kp_rp_high = 0.15;
static const float kDCM_kp_rp_medium = 0.05967;
static const float kDCM_kp_rp_low = 0.01;
int8_t _clamp;
// status reporting
float get_accel_weight(void);
float get_renorm_val(void);
float get_error_rp(void);
float get_error_yaw(void);
private:
float _kp_roll_pitch;
float _ki_roll_pitch;
float _kp_yaw;
float _ki_yaw;
bool _have_initial_yaw;
// Methods
void read_adc_raw(void);
void accel_adjust(Vector3f &accel);
float read_adc(int select);
void matrix_update(float _G_Dt);
void normalize(void);
void check_matrix(void);
Vector3f renorm(Vector3f const &a, int &problem);
void drift_correction(void);
void euler_angles(void);
void euler_rp(void);
void euler_yaw(void);
// members
Compass * _compass;
// note: we use ref-to-pointer here so that our caller can change the GPS without our noticing
// IMU under us without our noticing.
GPS *&_gps; // note: this is a reference to a pointer owned by the caller
IMU *_imu;
Matrix3f _dcm_matrix;
// sum of accel vectors between drift_correction() calls
// this allows the drift correction to run at a different rate
// to the main DCM update code
Vector3f _accel_vector;
Vector3f _accel_sum;
uint8_t _accel_sum_count;
Vector3f _gyro_vector; // Store the gyros turn rate in a vector
Vector3f _omega_P; // Omega Proportional correction
Vector3f _omega_I; // Omega Integrator correction
Vector3f _omega_integ_corr; // Partially corrected Gyro_Vector data - used for centrepetal correction
Vector3f _omega; // Corrected Gyro_Vector data
Vector3f _omega_smoothed;
float _health;
bool _centripetal;
uint8_t _toggle;
// state to support status reporting
float _accel_weight_sum;
uint16_t _accel_weight_count;
float _renorm_val_sum;
uint16_t _renorm_val_count;
float _error_rp_sum;
uint16_t _error_rp_count;
float _error_yaw_sum;
uint16_t _error_yaw_count;
};
#endif